-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStockPredictor.cpp
231 lines (200 loc) · 7.86 KB
/
StockPredictor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*
* NetworkConstants.cpp
*
* Created on: 20-Oct-2019
* Author: Prashant Srivastava
*/
#include "StockPredictor.hpp"
#include "NetworkConstants.hpp"
#include "StockLSTM.hpp"
#include "StockPrices.hpp"
#include <cassert>
#include <iostream>
#include <torch/torch.h>
StockPredictor::StockPredictor()
: m_minmaxScaler{}, m_lstmNetwork(nullptr),
m_stockPrices(nullptr), m_stockSymbol{} {
torch::nn::LSTMOptions lstmOpts1(NetworkConstants::input_size,
NetworkConstants::hidden_size);
torch::nn::LSTMOptions lstmOpts2(NetworkConstants::hidden_size,
NetworkConstants::hidden_size);
lstmOpts1.layers(NetworkConstants::num_of_layers)
.dropout(NetworkConstants::klsmt1DropOut)
.with_bias(NetworkConstants::kLstmIncludeBias);
lstmOpts2.layers(NetworkConstants::num_of_layers)
.dropout(NetworkConstants::klsmt2DropOut)
.with_bias(NetworkConstants::kLstmIncludeBias);
torch::nn::LinearOptions linearOpts(NetworkConstants::hidden_size,
NetworkConstants::output_size);
linearOpts.with_bias(false);
torch::nn::DropoutOptions dropOutOpts(NetworkConstants::kdropOutDropOut);
m_lstmNetwork = std::make_shared<StockLSTM>(lstmOpts1, lstmOpts2, dropOutOpts,
linearOpts);
}
void StockPredictor::loadModel(const std::string &stockSymbol) {
if (!stockSymbol.empty()) {
m_stockSymbol = stockSymbol;
const std::string trainedModel = m_stockSymbol + ".pt";
try {
m_stockPrices.reset(new StockPrices(m_minmaxScaler));
if (m_stockPrices->loadTimeSeries(m_stockSymbol, 2000)) {
std::cout << m_stockSymbol << " has one or more bad entries\n";
} else {
m_stockPrices->normalizeData();
m_stockPrices->reshapeSeries(NetworkConstants::kSplitRatio,
NetworkConstants::kPrevSamples);
torch::load(m_lstmNetwork, trainedModel);
}
std::cout << "Loaded..." << trainedModel << '\n';
} catch (...) {
std::cout << "Failed to load" << trainedModel << '\n';
}
}
}
void StockPredictor::predict(const int64_t N) {
// N is the next future N days predictions
// For predicting 1 sample we would need last N but
// NetworkConstants::kPrevSamples samples
auto testData = m_stockPrices->getTestData();
auto testSamples = std::get<0>(testData);
// Erase all but NetworkConstants::kPrevSamples samples
testSamples.erase(std::begin(testSamples),
std::end(testSamples) - NetworkConstants::kPrevSamples);
assert(testSamples.size() ==
static_cast<size_t>(NetworkConstants::kPrevSamples));
std::vector<float> predictedNormalizedPrices;
for (int64_t t = 0; t < N; ++t) {
const auto &nextClosingNormalizedPrices = predict(testSamples);
predictedNormalizedPrices.push_back(nextClosingNormalizedPrices[0]);
// Prepare for next training set
testSamples.erase(testSamples.begin());
testSamples.push_back(nextClosingNormalizedPrices[0]);
assert(testSamples.size() ==
static_cast<size_t>(NetworkConstants::kPrevSamples));
}
assert(predictedNormalizedPrices.size() == static_cast<size_t>(N));
fileLogger(m_stockSymbol + "_future.csv", predictedNormalizedPrices);
}
void StockPredictor::testModel(const std::string &args) {
const std::string testPreditorLogFile = m_stockSymbol + "_test_pred.csv";
const std::string testLogFile = m_stockSymbol + "_test.csv";
int64_t days = -1;
bool grabTrainData = false;
try {
days = std::stoi(args);
} catch (...) {
days = -1;
}
if (days != -1) {
predict(days);
return;
}
if (args.compare("trainData") == 0) {
grabTrainData = true;
}
const auto &dataSet = (grabTrainData) ? m_stockPrices->getTrainData()
: m_stockPrices->getTestData();
const auto &x_test = std::get<0>(dataSet);
const auto &y_test = std::get<1>(dataSet);
const auto &allDates = std::get<2>(dataSet);
std::ofstream fileHandle(testLogFile);
fileHandle << "Close, Price\n";
std::transform(std::cbegin(y_test), std::cend(y_test), std::cbegin(allDates),
std::ostream_iterator<std::string>(fileHandle, "\n"),
[](const auto &price, const auto &date) {
return std::string(date) + std::string(",") +
std::to_string(price);
});
fileHandle.close();
// Predict the output using the neural network from test dataSet
if (m_lstmNetwork) {
const auto &y_test_pred = predict(x_test, y_test);
std::cout << "WEBREQUEST Writing test dataset to " << testPreditorLogFile
<< '\n';
fileLogger(testPreditorLogFile, y_test_pred, y_test, allDates);
// fileLogger(testLogFile, y_test, allDates);
} else {
std::cout << "WEBREQUEST Cannnot predict data. \n";
}
}
StockPredictor::~StockPredictor() {}
void StockPredictor::loadTimeSeries() {}
std::vector<float>
StockPredictor::predict(const std::vector<float> &input,
const std::vector<float> &expectedOuput) {
std::vector<float> result;
torch::Tensor x_test = torch::tensor(input), target;
float accumulated_loss = 0.0f;
bool gpuAvailable = torch::cuda::is_available();
if (gpuAvailable) {
m_lstmNetwork->to(torch::kCUDA);
} else {
m_lstmNetwork->to(torch::kCPU);
}
if (!expectedOuput.empty()) {
target = torch::tensor(expectedOuput)
.to(gpuAvailable ? torch::kCUDA : torch::kCPU);
}
x_test = x_test.view({NetworkConstants::kPrevSamples, -1, 1});
x_test = x_test.to(gpuAvailable ? torch::kCUDA : torch::kCPU);
m_lstmNetwork->eval();
{
torch::NoGradGuard no_grad;
if (input.size() <
static_cast<size_t>(NetworkConstants::kPrevSamples * 100)) {
for (int64_t idx = 0; idx < x_test.size(1); ++idx) {
const auto &slicedTensor = x_test.slice(1, idx, idx + 1);
auto validateOut = m_lstmNetwork->forward(slicedTensor);
result.push_back(validateOut.item<float>());
if (!expectedOuput.empty()) {
const auto &slicedTargetTensor = target.slice(0, idx, idx + 1);
auto validateLoss = torch::mse_loss(validateOut, slicedTargetTensor);
accumulated_loss += std::pow(validateLoss.item<float>(), 2.0f);
}
}
if (!expectedOuput.empty()) {
accumulated_loss = std::sqrt(accumulated_loss / x_test.size(1));
std::cout << "WEBREQUEST Prediction Loss: " << accumulated_loss << '\n';
}
} else {
// Feed forward the test data
auto validateOut = m_lstmNetwork->forward(x_test);
for (size_t ele = 0; ele < static_cast<size_t>(x_test.size(1)); ++ele) {
result.push_back(validateOut[ele].item<float>());
}
if (!expectedOuput.empty()) {
// Calculate the validation loss
auto validateLoss = torch::mse_loss(validateOut, target);
std::cout << "WEBREQUEST Prediction Loss: "
<< validateLoss.item<float>() << '\n';
}
}
}
return result;
}
void StockPredictor::fileLogger(
const std::string &logFileName, const std::vector<float> &y_test,
const std::vector<float> &input,
const std::vector<std::string> &allDates) const {
std::ofstream fileHandle(logFileName, std::ios::trunc);
if (!allDates.empty()) {
fileHandle << "date,price,actual_price\n";
} else {
fileHandle << "price\n";
}
if (fileHandle.good()) {
for (size_t idx = 0; idx < y_test.size(); ++idx) {
if (y_test[idx] >= 0.0 && y_test[idx] <= 1.0) {
} else {
std::cout << "Wrong entry at : " << idx << " :" << y_test[idx] << '\n';
}
if (!allDates.empty()) {
fileHandle << allDates[idx] << "," << m_minmaxScaler(y_test[idx]) << ","
<< m_minmaxScaler(input[idx]) << '\n';
} else {
fileHandle << m_minmaxScaler(y_test[idx]) << '\n';
}
}
}
fileHandle.close();
}