-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
534 lines (446 loc) · 23.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import abc
import argparse
import os
import logging.config
import yaml
import json
import pickle
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from models.HiCSR_model import Generator, Discriminator
from models.DAE_model import DAE
from feature_reconstruction_loss import FeatureReconstructionLoss
from dataloader import DatasetFromFolder
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def setup_logging(log_dir, default_path='logging.yaml', default_level=logging.INFO, env_key='LOG_CFG'):
'''
Setup logging configuration, config file is logging.yaml
'''
path = default_path
value = os.getenv(env_key, None)
if value:
path = value
if os.path.exists(path):
with open(path, 'rt') as f:
config = yaml.safe_load(f.read())
config['handlers']['debug_file_handler']['filename'] = log_dir
logging.config.dictConfig(config)
else:
logging.basicConfig(level=default_level)
class ClassModel(object):
__metaclass__ = abc.ABCMeta
_hparams = {}
_model = None
_input_shape = None
_output_shape = None
_writer = None
def set_data_shapes(self, input_shape, output_shape):
self._input_shape = input_shape
self._output_shape = output_shape
def set_writer(self, summary_writer):
self._writer = summary_writer
@abc.abstractmethod
def set_model(self, hparams):
pass
@abc.abstractmethod
def fit_model(self, train_set):
pass
@abc.abstractmethod
def _set_default_model_specific_hparams(self):
pass
def set_hparams(self, hparams_args={}):
hparams = {
"random_state" : None,
}
self._hparams = hparams
self._set_default_model_specific_hparams()
self._hparams.update(hparams_args)
self._hparams.update(hparams)
def update_hparams(self, hparams_args):
self._hparams.update(hparams_args)
def save_model(self):
model_name = self.__class__.__name__
logging.info("saving model as {}.pkl...".format(model_name))
self._writer = None
torch.save(self._model.state_dict(),
'./experiments/{}/{}.pth'.format(self._hparams['experiment'],
self._hparams['experiment']))
with open('./experiments/{}/{}.pkl'.format(self._hparams['experiment'],model_name), 'wb') as output:
pickle.dump(self.__dict__, output, protocol=pickle.HIGHEST_PROTOCOL)
logging.info("save complete")
def load_model(self, filename):
logging.info("loading model...")
with open(filename+'.pkl', 'rb') as model_file:
self.__dict__.clear()
self.__dict__.update(pickle.load(model_file))
self._model = torch.load(filename+'.pth')
logging.info("model loaded")
class HiCSRModel(ClassModel):
def _set_default_model_specific_hparams(self):
self._hparams.update({
"lambda_a": 2.5e-3,
"lambda_f": 1,
"lambda_1": 1,
"G_optimizer": 'adam',
"G_learning_rate": 1e-5,
"D_optimizer": 'adam',
"D_learning_rate": 1e-5,
"beta_1": 0.9,
"beta_2": 0.999,
"res_blocks": 15,
"epochs": 500,
"num_workers":8,
"batch_size":128,
"random_state": 12345,
})
def set_model(self):
device = torch.device("cuda:{}".format(self._hparams['gpu']) if torch.cuda.is_available() else "cpu")
logging.info('setting model on device: {}'.format(device))
if torch.cuda.device_count() > 1:
logging.info('Using {} devices'.format(torch.cuda.device_count()))
G = Generator(num_res_blocks=self._hparams['res_blocks'])
D = Discriminator()
G.init_params()
D.init_params()
G = nn.DataParallel(G).cuda()
D = nn.DataParallel(D).cuda()
else:
G = Generator(num_res_blocks=self._hparams['res_blocks']).to(device)
D = Discriminator().to(device)
G.init_params()
D.init_params()
self._model = G
self.D = D
def fit_model(self, train_set, valid_set):
device = torch.device("cuda:{}".format(self._hparams['gpu']) if torch.cuda.is_available() else "cpu")
logging.info('fitting model on device: {}'.format(device))
train_loader = DataLoader(dataset=train_set,
num_workers=self._hparams['num_workers'],
batch_size=self._hparams['batch_size'],
shuffle=True)
valid_loader = DataLoader(dataset=valid_set,
num_workers=self._hparams['num_workers'],
batch_size=self._hparams['batch_size'],
shuffle=False)
G_optimizer = Adam(self._model.parameters(),lr=self._hparams['G_learning_rate'])
D_optimizer = Adam(self.D.parameters(),lr=self._hparams['D_learning_rate'])
adv_loss = nn.BCEWithLogitsLoss().to(device)
l1_loss = nn.L1Loss().to(device)
feature_reconstruction_loss = FeatureReconstructionLoss().to(device)
logging.info("beginning adversarial training")
for epoch in range(0, self._hparams['epochs']):
train_G_total_epoch_loss = 0
train_G_adv_epoch_loss = 0
train_G_image_epoch_loss = 0
train_G_feature_epoch_loss = 0
D_epoch_loss = 0
D_real_epoch_loss = 0
D_fake_epoch_loss = 0
D_real_epoch_acc = 0
D_fake_epoch_acc = 0
self._model.train()
self.D.train()
for iteration, (target, data) in enumerate(train_loader):
#######################
# Train G #
#######################
self._model.zero_grad()
target, data = target.float().to(device), data.float().to(device)
# I_sr = G(lr)
output = self._model(data)
# compute pixelwise loss
image_loss = l1_loss(output, target)
# compute feature reconstruction loss
feature_loss = sum(feature_reconstruction_loss(output, target))
# compute adversarial loss
pred_fake = self.D(output)
labels_real = torch.ones_like(pred_fake, requires_grad=False).to(device)
GAN_loss = adv_loss(pred_fake, labels_real)
# compute total generator loss
total_loss_G = self._hparams['lambda_a'] * GAN_loss + \
self._hparams['lambda_1'] * image_loss + \
self._hparams['lambda_f'] * feature_loss
# gradient step for generator
total_loss_G.backward()
G_optimizer.step()
# record losses
train_G_total_epoch_loss += total_loss_G.item()
train_G_adv_epoch_loss += GAN_loss.item()
train_G_image_epoch_loss += image_loss.item()
train_G_feature_epoch_loss += feature_loss
#######################
# Train D #
#######################
self.D.zero_grad()
# train on real data
pred_real = self.D(target)
labels_real = torch.ones_like(pred_real, requires_grad=False).to(device)
pred_labels_real = (pred_real>0.5).float().detach()
acc_real = (pred_labels_real == labels_real).float().sum()/labels_real.shape[0]
loss_real = adv_loss(pred_real, labels_real)
loss_real.backward()
# train on fake data
output = self._model(data)
pred_fake = self.D(output.detach())
labels_fake = torch.zeros_like(pred_fake, requires_grad=False).to(device)
pred_labels_fake = (pred_fake>0.5).float().detach()
acc_fake = (pred_labels_fake == labels_fake).float().sum()/labels_fake.shape[0]
loss_fake = adv_loss(pred_fake, labels_fake)
loss_fake.backward()
# get total loss
total_loss_D = loss_real + loss_fake
# gradient step for discriminator
D_optimizer.step()
# record losses
D_epoch_loss += total_loss_D.item()
D_real_epoch_loss += loss_real.item()
D_fake_epoch_loss += loss_fake.item()
D_real_epoch_acc += acc_real.item()
D_fake_epoch_acc += acc_fake.item()
# log training progress
if iteration%10 == 0:
logging.info("===> Training Epoch[{}]({}/{}) "
"[G: {:.4f} l1 loss: {:.4f} adv loss: {:.4f} feat loss: {:.4f}] "
"[D: {:.4f} real_loss: {:.4f} real_acc: {:.4f} "
"fake_loss: {:.4f} fake_acc: {:.4f}]".format(epoch,
iteration,
len(train_loader),
total_loss_G.item(),
image_loss.item(),
GAN_loss.item(),
feature_loss,
total_loss_D.item(),
loss_real.item(),
acc_real.item(),
loss_fake.item(),
acc_fake.item()))
with torch.no_grad():
valid_epoch_image_loss = 0
self._model.eval()
for i, (target, data) in enumerate(valid_loader):
target, data = target.float().to(device), data.float().to(device)
output = self._model(data).detach()
image_loss = l1_loss(target, output)
valid_epoch_image_loss += image_loss.item()
#######################
# logging #
#######################
valid_image_loss = valid_epoch_image_loss/len(valid_loader)
D_real_loss = D_real_epoch_loss/len(train_loader)
D_real_acc = D_real_epoch_acc/len(train_loader)
D_fake_loss = D_fake_epoch_loss/len(train_loader)
D_fake_acc = D_fake_epoch_acc/len(train_loader)
D_loss = D_epoch_loss/len(train_loader)
train_G_total_loss = train_G_total_epoch_loss/len(train_loader)
train_G_image_loss = train_G_image_epoch_loss/len(train_loader)
train_G_adv_loss = train_G_adv_epoch_loss/len(train_loader)
train_G_feature_loss = train_G_feature_epoch_loss/len(train_loader)
self._log_epoch_losses(self._writer,
epoch,
D_loss,
D_real_loss,
D_real_acc,
D_fake_loss,
D_fake_acc,
train_G_total_loss,
train_G_image_loss,
train_G_adv_loss,
train_G_feature_loss,
valid_image_loss)
self._log_epoch_images(self._writer, epoch, data, target, output, 20)
if epoch%20 == 0:
self._save_checkpoint(epoch, G_optimizer, D_optimizer)
def _log_epoch_losses(self,
summary_writer,
epoch,
D_loss,
D_loss_real,
D_acc_real,
D_loss_fake,
D_acc_fake,
train_G_total_loss,
train_G_image_loss,
train_G_adv_loss,
train_G_feature_loss,
valid_image_loss):
summary_writer.add_scalar('D_loss', D_loss, epoch)
summary_writer.add_scalars('D_loss_components', {'real': D_loss_real, 'fake':D_loss_fake}, epoch)
summary_writer.add_scalars('D_acc_components', {'real': D_acc_real, 'fake':D_acc_fake}, epoch)
summary_writer.add_scalars('G_loss', {'train': train_G_total_loss, 'valid': valid_image_loss}, epoch)
summary_writer.add_scalar('image_loss', train_G_image_loss, epoch)
summary_writer.add_scalar('adversarial_loss', train_G_adv_loss, epoch)
summary_writer.add_scalar('feature_loss', train_G_feature_loss, epoch)
summary_writer.flush()
logging.info("Epoch {} Complete: \n[D Loss: {:.4f} Real D Loss: {:.4f} Fake D_loss: {:.4f}] [Train G Loss: {:.4f} Valid G loss: {:.4f}]\n".format(epoch,
D_loss, D_loss_real, D_loss_fake,
train_G_total_loss, valid_image_loss))
def _log_epoch_images(self, summary_writer, epoch, data, target, output, n_images):
data = data.cpu().detach().numpy()
target = target.cpu().detach().numpy()
output = output.cpu().detach().numpy()
for i in range(0,n_images):
fig, axs = plt.subplots(1,3, facecolor='w', edgecolor='k')
fig.subplots_adjust(hspace = .5, wspace=.1)
axs = axs.ravel()
for j, mat in enumerate([data[i],target[i],output[i]]):
if mat.shape[-1] == 40:
mat = mat[:,6:34,6:34]
im = axs[j].matshow(mat[0], cmap='YlOrRd', interpolation="none", vmin=-1, vmax=1)
plt.setp(axs[j].get_xticklabels(), visible=False)
plt.setp(axs[j].get_yticklabels(), visible=False)
axs[j].tick_params(axis='both', which='both', length=0)
plt.title('input/target/prediction')
summary_writer.add_figure('epoch_image_comparison_{}'.format(i),fig,epoch)
summary_writer.flush()
def _save_checkpoint(self, epoch, G_optimizer, D_optimizer, scheduler = None):
state = {
'epoch': epoch,
'G_state_dict': self._model.state_dict(),
'D_state_dict': self.D.state_dict(),
'G_optimizer': G_optimizer.state_dict(),
'D_optimizer': D_optimizer.state_dict(),
'scheduler': scheduler,
}
torch.save(state, './experiments/{}/checkpoints/{}_ckpt_{}.pth'.format(self._hparams['experiment'], self.__class__.__name__, epoch))
class DAEModel(ClassModel):
def _set_default_model_specific_hparams(self):
self._hparams.update({
"batch_size": 256,
"epochs": 600,
"learning_rate": 0.0001,
"noise_scale": 0.1,
"gpu": 0,
"num_workers": 8,
"random_state": 12345,
})
def set_model(self):
torch.manual_seed(self._hparams['random_state'])
device = torch.device("cuda:{}".format(self._hparams['gpu']) if torch.cuda.is_available() else "cpu")
logging.info('setting model on device: {}'.format(device))
if torch.cuda.device_count() > 1:
logging.info('Using {} devices'.format(torch.cuda.device_count()))
net = nn.DataParallel(DAE().to(device))
else:
net = DAE().to(device)
net = DAE().to(device)
self._model = net
def fit_model(self, train_set, valid_set):
device = torch.device("cuda:{}".format(self._hparams['gpu']) if torch.cuda.is_available() else "cpu")
logging.info('fitting model on device: {}'.format(device))
train_loader = DataLoader(dataset=train_set,
num_workers=self._hparams['num_workers'],
batch_size=self._hparams['batch_size'],
shuffle=True)
valid_loader = DataLoader(dataset=valid_set,
num_workers=self._hparams['num_workers'],
batch_size=self._hparams['batch_size'],
shuffle=False)
optimizer = Adam(self._model.parameters(), lr=self._hparams['learning_rate'])
criterion = nn.MSELoss()
for epoch in range(0, self._hparams['epochs']):
train_epoch_loss = 0
for iteration, (target, _) in enumerate(train_loader):
self._model.train()
self._model.zero_grad()
target = target.float().to(device)
target_noisy = target + self._hparams['noise_scale'] * torch.randn_like(target)
target_noisy = torch.clamp(target_noisy, min=-1, max=1)
output = self._model(target_noisy)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_epoch_loss += loss.item()
if iteration%10 == 0:
logging.info("===> Training Epoch[{}]({}/{}): Loss: {:.8f}".format(epoch, iteration, len(train_loader), loss.item()))
valid_epoch_loss = 0
with torch.no_grad():
for iteration, (target, _) in enumerate(valid_loader):
self._model.eval()
target = target.float().to(device)
target_noisy = target + self._hparams['noise_scale'] * torch.randn_like(target)
target_noisy = torch.clamp(target_noisy, min=-1, max=1)
output = self._model(target)
loss = criterion(output, target)
valid_epoch_loss += loss.item()
train_epoch_loss = train_epoch_loss/len(train_loader)
valid_epoch_loss = valid_epoch_loss/len(valid_loader)
self._log_epoch_losses(self._writer, epoch, train_epoch_loss, valid_epoch_loss)
target = target.cpu().detach().numpy()
target_noisy = target_noisy.cpu().detach().numpy()
output = output.cpu().detach().numpy()
self._log_epoch_images(self._writer, epoch, target_noisy, target, output, 30)
if epoch%20 == 0:
torch.save(self._model,'./experiments/{}/checkpoints/{}_ckpt_{}.pth'.format(self._hparams['experiment'], self.__class__.__name__, epoch))
def _log_epoch_losses(self, summary_writer, epoch, train_loss, valid_loss):
summary_writer.add_scalars('mse', {'validation loss':valid_loss, 'training loss':train_loss}, epoch)
summary_writer.flush()
logging.info("Epoch {} Complete: Avg. Train Loss: {:.8f} - Avg. Valid Loss: {:.8f}\n".format(epoch, train_loss, valid_loss))
def _log_epoch_images(self, summary_writer, epoch, target_noisy, target, output, n_images):
if epoch%5 == 0:
for i in range(0,n_images):
fig, axs = plt.subplots(1,3, facecolor='w', edgecolor='k')
fig.subplots_adjust(hspace = .5, wspace=.1)
axs = axs.ravel()
for j, mat in enumerate([target_noisy[i],target[i],output[i]]):
if mat.shape[-1] == 40:
mat = mat[:,6:34,6:34]
axs[j].matshow(mat[0], cmap='YlOrRd', interpolation="none", vmin=-1, vmax=1)
plt.setp(axs[j].get_xticklabels(), visible=False)
plt.setp(axs[j].get_yticklabels(), visible=False)
axs[j].tick_params(axis='both', which='both', length=0)
plt.title('noisy_input/target/prediction')
summary_writer.add_figure('epoch_image_comparison_{}'.format(i),fig,epoch)
summary_writer.flush()
MODEL_REGISTRY = {
"HiCSR":HiCSRModel,
"DAE":DAEModel,
}
def main():
model_parser = argparse.ArgumentParser()
model_parser.add_argument('--data_fp', type=str, required=True,
help="directory containing training and validation data to use for model training")
model_parser.add_argument('--model', type=str, required=True,
help="Set the model to be trained, There are two options: 'HiCSR' will train the Hi-C enhancement model and 'DAE' will train the Denoising Autoencoder on the high resolution data")
model_parser.add_argument('--gpu', type=int, default=0,
help="GPU number to use for training, if the system has no GPU, training will automatically default to using the CPU. default = 0.")
model_parser.add_argument('--experiment', type=str, required=True,
help="experiment name associated with the training run, all model logging and final model file are saved under this name. Experiment name must match an entry in the experiment_hyperparameters.json config file")
args = model_parser.parse_args()
with open('experiment_hyperparameters.json', 'r') as f:
experiment_queue = json.load(f)
assert args.experiment in experiment_queue
experiment_specific_hparams = experiment_queue[args.experiment]
if not os.path.exists('./experiments'):
os.mkdir('./experiments')
experiment_fp = './experiments/{}'.format(args.experiment)
if not os.path.exists(experiment_fp):
os.mkdir(experiment_fp)
os.mkdir(experiment_fp+'/logs/')
os.mkdir(experiment_fp+'/checkpoints/')
os.mkdir(experiment_fp+'/tensorboard/')
setup_logging(log_dir='./experiments/{}/logs/{}.log'.format(args.experiment, args.experiment))
writer = SummaryWriter(log_dir='./experiments/{}/tensorboard/'.format(args.experiment),comment=args.experiment)
train_set = DatasetFromFolder(args.data_fp, data_type='train')
valid_set = DatasetFromFolder(args.data_fp, data_type='valid')
model = MODEL_REGISTRY[args.model]()
logging.info("defining model: {}".format(model.__class__.__name__))
model.set_hparams(vars(args))
model.update_hparams(experiment_specific_hparams)
logging.info("setting tensorboard writer")
model.set_writer(writer)
logging.info("hyperparameters: {}".format(model._hparams))
hr_shape, lr_shape = train_set.get_shape()
logging.info("train/valid samples: {}/{}".format(len(train_set), len(valid_set)))
logging.info("input/output shape: {}/{}".format(lr_shape, hr_shape))
model.set_data_shapes(input_shape=lr_shape, output_shape=hr_shape)
model.set_model()
model.fit_model(train_set, valid_set)
model.save_model()
if __name__ == "__main__":
main()