-
Notifications
You must be signed in to change notification settings - Fork 0
/
MSAOBL_RSource.R
194 lines (167 loc) · 5.88 KB
/
MSAOBL_RSource.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
library(foreach)
library(doParallel)
levyFlightDist <- function(beta, s)
{
return (((beta - 1)*gamma(beta - 1)*sin((pi*(beta - 1)) / 2)) / pi * s^beta)
}
levyFlightMove <- function(maxWalkStep, currGen, coords, upperBounds, lowerBounds)
{
levy = levyFlightDist(1.5, 2.0) # s = 2, zistit dobru hodnotu
alpha = maxWalkStep / currGen^2
resultCoords <- coords + levy * alpha
for(i in 1:(length(resultCoords)))
{
if(resultCoords[i] < lowerBounds[i])
{
resultCoords[i] <- lowerBounds[i]
}
if(resultCoords[i] > upperBounds[i])
{
resultCoords[i] <- upperBounds[i]
}
}
return (resultCoords)
}
EqFiveSixMove <- function(scaleFactor, goldenRatio, bestMothCoords, coords, upperBounds, lowerBounds)
{
resultCoords <- scaleFactor * coords + goldenRatio * (bestMothCoords - coords)
for(i in 1:(length(resultCoords)))
{
if(resultCoords[i] < lowerBounds[i])
{
resultCoords[i] <- lowerBounds[i]
}
if(resultCoords[i] > upperBounds[i])
{
resultCoords[i] <- upperBounds[i]
}
}
return (resultCoords);
}
bestMothOBL <- function(bestMoth, coords, upperBounds, lowerBounds, optFunc)
{
newMothCoords <- 2 * bestMoth - coords
for(i in 1:(length(newMothCoords) - 1))
{
if ((newMothCoords[i] < lowerBounds[i]) || (newMothCoords[i] > upperBounds[i]))
{
newMothCoords[i] = runif(1, lowerBounds[i], upperBounds[i])
}
}
newMothCoords[length(newMothCoords)] <- optFunc(newMothCoords[1:(length(newMothCoords)- 1)]);
return (newMothCoords);
}
boundsOBL <- function(upperBounds, lowerBounds, optFunc, coords)
{
#upperbounds and lowerBounds need added zero (any number) at the end to match length of moth vector
newMothCoords <- upperBounds + lowerBounds - coords
newMothCoords[length(newMothCoords)] <- optFunc(newMothCoords[1:(length(newMothCoords) - 1)])
return (newMothCoords)
}
MothSearchOpt <- function(optFunction, popSize, maxGeneration, stopValue, maxWalkStep, OBLStopPercent, upperBounds, lowerBounds, numThreads)
{
#parallel inits
exports <- c("levyFlightMove", "levyFlightDist", "boundsOBL", "bestMothOBL", "EqFiveSixMove")
cl <- parallel::makeCluster(numThreads)
doParallel::registerDoParallel(cl)
#constant inits
goldenRatio <- (1+sqrt(5))/2
scaleFactor <- rnorm(1, 0.5, 0.1)
OBLStop <- maxGeneration * OBLStopPercent / 100
#population init
popMatrix <- matrix(data = NA, nrow = length(lowerBounds) + 1, ncol = popSize)
for(i in 1:length(lowerBounds))
{
popMatrix[i,] <- runif(n=popSize, min=lowerBounds[i], max=upperBounds[i])
}
popMatrix[length(lowerBounds) + 1,] <- numeric(popSize)
popMatrix <- t(popMatrix)
#compute fitness of initial pop
for(i in 1:nrow(popMatrix))
{
popMatrix[i,ncol(popMatrix)] <- optFunction(popMatrix[i,1:ncol(popMatrix) - 1])
}
#added zero to bounds to match length of a Moth representations
lowerBounds <- c(lowerBounds, 0.0)
upperBounds <- c(upperBounds, 0.0)
dimensions <- length(lowerBounds)
#output inits
populationFitnesses <- matrix(data=NA, nrow = maxGeneration + 1, ncol=popSize)
populationFitnesses[1,] <- popMatrix[,dimensions]
populationCoords <- vector(mode = "list", length = maxGeneration + 1)
populationCoords[[1]] <- popMatrix[,1:(dimensions - 1)]
bestMothFitnesses <- numeric(maxGeneration + 1)
bestMothFitnesses[1] <- popMatrix[1,dimensions]
bestMothCoords <- matrix(data=NA, nrow = maxGeneration + 1, ncol=dimensions - 1)
bestMothCoords[1,] <- popMatrix[1,1:(dimensions - 1)]
for(j in 1:maxGeneration)
{
currGen <- j
#sort pop by fitness
popMatrix <- popMatrix[order(popMatrix[, ncol(popMatrix)]),]
bestMoth <- popMatrix[1,]
popMatrix <- foreach(i=1:popSize, .combine=rbind, .export=exports) %dopar%
{
# better half of population move (exploration)
if(i <= popSize/2)
{
newPositionMoth <- levyFlightMove(maxWalkStep, currGen, popMatrix[i,], upperBounds, lowerBounds)
newPositionMoth[dimensions] <- optFunction(newPositionMoth[1:(dimensions - 1)])
if(currGen < OBLStop){
OBLMoth <- bestMothOBL(bestMoth, popMatrix[i,], upperBounds, lowerBounds, optFunction)
if (OBLMoth[dimensions] < newPositionMoth[dimensions])
{
return (OBLMoth)
}
else
{
return (newPositionMoth)
}
}
else
{
return (newPositionMoth)
}
}
else #worse half of population move (exploitation)
{
randDecider <- runif(1, 0.0, 1.0);
if (randDecider < 0.5)
{
newPositionMoth <- EqFiveSixMove(scaleFactor, goldenRatio, bestMoth, popMatrix[i,], upperBounds, lowerBounds)
}
else
{
newPositionMoth <- EqFiveSixMove(scaleFactor, 1 / goldenRatio, bestMoth, popMatrix[i,], upperBounds, lowerBounds)
}
newPositionMoth[dimensions] <- optFunction(newPositionMoth[1:(dimensions - 1)])
if(currGen < OBLStop)
{
OBLMoth <- boundsOBL(upperBounds, lowerBounds, optFunction, popMatrix[i,])
if (OBLMoth[dimensions] < newPositionMoth[dimensions])
{
return (OBLMoth)
}
else
{
return (newPositionMoth)
}
}
else return (newPositionMoth)
}
}
if(bestMoth[dimensions] <= stopValue)
{
break
}
#writing output values
populationFitnesses[currGen + 1,] <- popMatrix[,dimensions]
populationCoords[[currGen + 1]] <- popMatrix[,1:(dimensions - 1)]
bestMothFitnesses[currGen + 1] <- bestMoth[dimensions]
bestMothCoords[currGen + 1,] <- bestMoth[1:(dimensions - 1)]
}
parallel::stopCluster(cl)
resultList <- list(bestMothFitnesses, bestMothCoords, populationFitnesses, populationCoords)
names(resultList) <- c("BM_Fitness","BM_Coords", "POP_Fitness", "POP_Coords")
return(resultList)
}