This repository has been archived by the owner on May 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 509
/
estimator_interface.cpp
586 lines (465 loc) · 19.8 KB
/
estimator_interface.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/****************************************************************************
*
* Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file estimator_interface.cpp
* Definition of base class for attitude estimators
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
* @author Siddharth B Purohit <siddharthbharatpurohit@gmail.com>
*/
#include "estimator_interface.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
// Accumulate imu data and store to buffer at desired rate
void EstimatorInterface::setIMUData(const imuSample &imu_sample)
{
// TODO: resolve misplaced responsibility
if (!_initialised) {
_initialised = init(imu_sample.time_us);
}
const float dt = math::constrain((imu_sample.time_us - _time_last_imu) / 1e6f, 1.0e-4f, 0.02f);
_time_last_imu = imu_sample.time_us;
if (_time_last_imu > 0) {
_dt_imu_avg = 0.8f * _dt_imu_avg + 0.2f * dt;
}
_newest_high_rate_imu_sample = imu_sample;
// Do not change order of computeVibrationMetric and checkIfVehicleAtRest
computeVibrationMetric(imu_sample);
_control_status.flags.vehicle_at_rest = checkIfVehicleAtRest(dt, imu_sample);
_imu_updated = _imu_down_sampler.update(imu_sample);
// accumulate and down-sample imu data and push to the buffer when new downsampled data becomes available
if (_imu_updated) {
_imu_buffer.push(_imu_down_sampler.getDownSampledImuAndTriggerReset());
// get the oldest data from the buffer
_imu_sample_delayed = _imu_buffer.get_oldest();
// calculate the minimum interval between observations required to guarantee no loss of data
// this will occur if data is overwritten before its time stamp falls behind the fusion time horizon
_min_obs_interval_us = (imu_sample.time_us - _imu_sample_delayed.time_us) / (_obs_buffer_length - 1);
setDragData(imu_sample);
}
}
void EstimatorInterface::computeVibrationMetric(const imuSample &imu)
{
// calculate a metric which indicates the amount of coning vibration
Vector3f temp = imu.delta_ang % _delta_ang_prev;
_vibe_metrics(0) = 0.99f * _vibe_metrics(0) + 0.01f * temp.norm();
// calculate a metric which indicates the amount of high frequency gyro vibration
temp = imu.delta_ang - _delta_ang_prev;
_delta_ang_prev = imu.delta_ang;
_vibe_metrics(1) = 0.99f * _vibe_metrics(1) + 0.01f * temp.norm();
// calculate a metric which indicates the amount of high frequency accelerometer vibration
temp = imu.delta_vel - _delta_vel_prev;
_delta_vel_prev = imu.delta_vel;
_vibe_metrics(2) = 0.99f * _vibe_metrics(2) + 0.01f * temp.norm();
}
bool EstimatorInterface::checkIfVehicleAtRest(float dt, const imuSample &imu)
{
// detect if the vehicle is not moving when on ground
if (!_control_status.flags.in_air) {
if ((_vibe_metrics(1) * 4.0E4f > _params.is_moving_scaler)
|| (_vibe_metrics(2) * 2.1E2f > _params.is_moving_scaler)
|| ((imu.delta_ang.norm() / dt) > 0.05f * _params.is_moving_scaler)) {
_time_last_move_detect_us = imu.time_us;
}
return ((imu.time_us - _time_last_move_detect_us) > (uint64_t)1E6);
} else {
_time_last_move_detect_us = imu.time_us;
return false;
}
}
void EstimatorInterface::setMagData(const magSample &mag_sample)
{
if (!_initialised || _mag_buffer_fail) {
return;
}
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_mag_buffer.get_length() < _obs_buffer_length) {
_mag_buffer_fail = !_mag_buffer.allocate(_obs_buffer_length);
if (_mag_buffer_fail) {
printBufferAllocationFailed("mag");
return;
}
}
// downsample to highest possible sensor rate
// by taking the average of incoming sample
_mag_sample_count++;
_mag_data_sum += mag_sample.mag;
_mag_timestamp_sum += mag_sample.time_us / 1000; // Dividing by 1000 to avoid overflow
// limit data rate to prevent data being lost
if ((mag_sample.time_us - _time_last_mag) > _min_obs_interval_us) {
_time_last_mag = mag_sample.time_us;
magSample mag_sample_new;
// Use the time in the middle of the downsampling interval for the sample
mag_sample_new.time_us = 1000 * (_mag_timestamp_sum / _mag_sample_count);
mag_sample_new.time_us -= _params.mag_delay_ms * 1000;
mag_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
mag_sample_new.mag = _mag_data_sum / _mag_sample_count;
_mag_buffer.push(mag_sample_new);
_mag_sample_count = 0;
_mag_data_sum.setZero();
_mag_timestamp_sum = 0;
}
}
void EstimatorInterface::setGpsData(const gps_message &gps)
{
if (!_initialised || _gps_buffer_fail) {
return;
}
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_gps_buffer.get_length() < _obs_buffer_length) {
_gps_buffer_fail = !_gps_buffer.allocate(_obs_buffer_length);
if (_gps_buffer_fail) {
printBufferAllocationFailed("GPS");
return;
}
}
// limit data rate to prevent data being lost
const bool need_gps = (_params.fusion_mode & MASK_USE_GPS) || (_params.vdist_sensor_type == VDIST_SENSOR_GPS);
// TODO: remove checks that are not timing related
if (((gps.time_usec - _time_last_gps) > _min_obs_interval_us) && need_gps && gps.fix_type > 2) {
_time_last_gps = gps.time_usec;
gpsSample gps_sample_new;
gps_sample_new.time_us = gps.time_usec - _params.gps_delay_ms * 1000;
gps_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
gps_sample_new.vel = gps.vel_ned;
_gps_speed_valid = gps.vel_ned_valid;
gps_sample_new.sacc = gps.sacc;
gps_sample_new.hacc = gps.eph;
gps_sample_new.vacc = gps.epv;
gps_sample_new.hgt = (float)gps.alt * 1e-3f;
gps_sample_new.yaw = gps.yaw;
if (ISFINITE(gps.yaw_offset)) {
_gps_yaw_offset = gps.yaw_offset;
} else {
_gps_yaw_offset = 0.0f;
}
// Only calculate the relative position if the WGS-84 location of the origin is set
if (collect_gps(gps)) {
float lpos_x = 0.0f;
float lpos_y = 0.0f;
map_projection_project(&_pos_ref, (gps.lat / 1.0e7), (gps.lon / 1.0e7), &lpos_x, &lpos_y);
gps_sample_new.pos(0) = lpos_x;
gps_sample_new.pos(1) = lpos_y;
} else {
gps_sample_new.pos(0) = 0.0f;
gps_sample_new.pos(1) = 0.0f;
}
_gps_buffer.push(gps_sample_new);
}
}
void EstimatorInterface::setBaroData(const baroSample &baro_sample)
{
if (!_initialised || _baro_buffer_fail) {
return;
}
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_baro_buffer.get_length() < _obs_buffer_length) {
_baro_buffer_fail = !_baro_buffer.allocate(_obs_buffer_length);
if (_baro_buffer_fail) {
printBufferAllocationFailed("baro");
return;
}
}
// downsample to highest possible sensor rate
// by baro data by taking the average of incoming sample
_baro_sample_count++;
_baro_alt_sum += baro_sample.hgt;
_baro_timestamp_sum += baro_sample.time_us / 1000; // Dividing by 1000 to avoid overflow
// limit data rate to prevent data being lost
if ((baro_sample.time_us - _time_last_baro) > _min_obs_interval_us) {
_time_last_baro = baro_sample.time_us;
const float baro_alt_avg = _baro_alt_sum / (float)_baro_sample_count;
baroSample baro_sample_new;
baro_sample_new.hgt = compensateBaroForDynamicPressure(baro_alt_avg);
// Use the time in the middle of the downsampling interval for the sample
baro_sample_new.time_us = 1000 * (_baro_timestamp_sum / _baro_sample_count);
baro_sample_new.time_us -= _params.baro_delay_ms * 1000;
baro_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
_baro_buffer.push(baro_sample_new);
_baro_sample_count = 0;
_baro_alt_sum = 0.0f;
_baro_timestamp_sum = 0;
}
}
void EstimatorInterface::setAirspeedData(const airspeedSample &airspeed_sample)
{
if (!_initialised || _airspeed_buffer_fail) {
return;
}
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_airspeed_buffer.get_length() < _obs_buffer_length) {
_airspeed_buffer_fail = !_airspeed_buffer.allocate(_obs_buffer_length);
if (_airspeed_buffer_fail) {
printBufferAllocationFailed("airspeed");
return;
}
}
// limit data rate to prevent data being lost
if ((airspeed_sample.time_us - _time_last_airspeed) > _min_obs_interval_us) {
_time_last_airspeed = airspeed_sample.time_us;
airspeedSample airspeed_sample_new = airspeed_sample;
airspeed_sample_new.time_us -= _params.airspeed_delay_ms * 1000;
airspeed_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
_airspeed_buffer.push(airspeed_sample_new);
}
}
void EstimatorInterface::setRangeData(const rangeSample &range_sample)
{
if (!_initialised || _range_buffer_fail) {
return;
}
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_range_buffer.get_length() < _obs_buffer_length) {
_range_buffer_fail = !_range_buffer.allocate(_obs_buffer_length);
if (_range_buffer_fail) {
printBufferAllocationFailed("range");
return;
}
}
// limit data rate to prevent data being lost
if ((range_sample.time_us - _time_last_range) > _min_obs_interval_us) {
_time_last_range = range_sample.time_us;
rangeSample range_sample_new = range_sample;
range_sample_new.time_us -= _params.range_delay_ms * 1000;
range_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
_range_buffer.push(range_sample_new);
}
}
void EstimatorInterface::setOpticalFlowData(const flowSample &flow)
{
if (!_initialised || _flow_buffer_fail) {
return;
}
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_flow_buffer.get_length() < _imu_buffer_length) {
_flow_buffer_fail = !_flow_buffer.allocate(_imu_buffer_length);
if (_flow_buffer_fail) {
printBufferAllocationFailed("flow");
return;
}
}
// limit data rate to prevent data being lost
if ((flow.time_us - _time_last_optflow) > _min_obs_interval_us) {
_time_last_optflow = flow.time_us;
flowSample optflow_sample_new = flow;
optflow_sample_new.time_us -= _params.flow_delay_ms * 1000;
optflow_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
_flow_buffer.push(optflow_sample_new);
}
}
// set attitude and position data derived from an external vision system
void EstimatorInterface::setExtVisionData(const extVisionSample &evdata)
{
if (!_initialised || _ev_buffer_fail) {
return;
}
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_ext_vision_buffer.get_length() < _obs_buffer_length) {
_ev_buffer_fail = !_ext_vision_buffer.allocate(_obs_buffer_length);
if (_ev_buffer_fail) {
printBufferAllocationFailed("vision");
return;
}
}
// limit data rate to prevent data being lost
if ((evdata.time_us - _time_last_ext_vision) > _min_obs_interval_us) {
_time_last_ext_vision = evdata.time_us;
extVisionSample ev_sample_new = evdata;
// calculate the system time-stamp for the mid point of the integration period
ev_sample_new.time_us -= _params.ev_delay_ms * 1000;
ev_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
_ext_vision_buffer.push(ev_sample_new);
}
}
void EstimatorInterface::setAuxVelData(const auxVelSample &auxvel_sample)
{
if (!_initialised || _auxvel_buffer_fail) {
return;
}
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_auxvel_buffer.get_length() < _obs_buffer_length) {
_auxvel_buffer_fail = !_auxvel_buffer.allocate(_obs_buffer_length);
if (_auxvel_buffer_fail) {
printBufferAllocationFailed("aux vel");
return;
}
}
// limit data rate to prevent data being lost
if ((auxvel_sample.time_us - _time_last_auxvel) > _min_obs_interval_us) {
_time_last_auxvel = auxvel_sample.time_us;
auxVelSample auxvel_sample_new = auxvel_sample;
auxvel_sample_new.time_us -= _params.auxvel_delay_ms * 1000;
auxvel_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
_auxvel_buffer.push(auxvel_sample_new);
}
}
void EstimatorInterface::setDragData(const imuSample &imu)
{
// down-sample the drag specific force data by accumulating and calculating the mean when
// sufficient samples have been collected
if ((_params.fusion_mode & MASK_USE_DRAG) && !_drag_buffer_fail) {
// Allocate the required buffer size if not previously done
// Do not retry if allocation has failed previously
if (_drag_buffer.get_length() < _obs_buffer_length) {
_drag_buffer_fail = !_drag_buffer.allocate(_obs_buffer_length);
if (_drag_buffer_fail) {
printBufferAllocationFailed("drag");
return;
}
}
_drag_sample_count ++;
// note acceleration is accumulated as a delta velocity
_drag_down_sampled.accelXY(0) += imu.delta_vel(0);
_drag_down_sampled.accelXY(1) += imu.delta_vel(1);
_drag_down_sampled.time_us += imu.time_us;
_drag_sample_time_dt += imu.delta_vel_dt;
// calculate the downsample ratio for drag specific force data
uint8_t min_sample_ratio = (uint8_t) ceilf((float)_imu_buffer_length / _obs_buffer_length);
if (min_sample_ratio < 5) {
min_sample_ratio = 5;
}
// calculate and store means from accumulated values
if (_drag_sample_count >= min_sample_ratio) {
// note conversion from accumulated delta velocity to acceleration
_drag_down_sampled.accelXY(0) /= _drag_sample_time_dt;
_drag_down_sampled.accelXY(1) /= _drag_sample_time_dt;
_drag_down_sampled.time_us /= _drag_sample_count;
// write to buffer
_drag_buffer.push(_drag_down_sampled);
// reset accumulators
_drag_sample_count = 0;
_drag_down_sampled.accelXY.zero();
_drag_down_sampled.time_us = 0;
_drag_sample_time_dt = 0.0f;
}
}
}
bool EstimatorInterface::initialise_interface(uint64_t timestamp)
{
// find the maximum time delay the buffers are required to handle
// it's reasonable to assume that barometer is always used, and its delay is low
// it's reasonable to assume that aux velocity device has low delay. TODO: check the delay only if the aux device is used
float max_time_delay_ms = math::max(_params.baro_delay_ms, _params.auxvel_delay_ms);
// using airspeed
if (_params.arsp_thr > FLT_EPSILON) {
max_time_delay_ms = math::max(_params.airspeed_delay_ms, max_time_delay_ms);
}
// mag mode
if (_params.mag_fusion_type != MAG_FUSE_TYPE_NONE) {
max_time_delay_ms = math::max(_params.mag_delay_ms, max_time_delay_ms);
}
// range aid or range height
if (_params.range_aid || (_params.vdist_sensor_type == VDIST_SENSOR_RANGE)) {
max_time_delay_ms = math::max(_params.range_delay_ms, max_time_delay_ms);
}
if (_params.fusion_mode & MASK_USE_GPS) {
max_time_delay_ms = math::max(_params.gps_delay_ms, max_time_delay_ms);
}
if (_params.fusion_mode & MASK_USE_OF) {
max_time_delay_ms = math::max(_params.flow_delay_ms, max_time_delay_ms);
}
if (_params.fusion_mode & (MASK_USE_EVPOS | MASK_USE_EVYAW | MASK_USE_EVVEL)) {
max_time_delay_ms = math::max(_params.ev_delay_ms, max_time_delay_ms);
}
// calculate the IMU buffer length required to accomodate the maximum delay with some allowance for jitter
_imu_buffer_length = ceilf(max_time_delay_ms / FILTER_UPDATE_PERIOD_MS) + 1;
// set the observation buffer length to handle the minimum time of arrival between observations in combination
// with the worst case delay from current time to ekf fusion time
// allow for worst case 50% extension of the ekf fusion time horizon delay due to timing jitter
const float ekf_delay_ms = max_time_delay_ms * 1.5f;
_obs_buffer_length = ceilf(ekf_delay_ms / _params.sensor_interval_min_ms);
// limit to be no longer than the IMU buffer (we can't process data faster than the EKF prediction rate)
_obs_buffer_length = math::min(_obs_buffer_length, _imu_buffer_length);
if (!_imu_buffer.allocate(_imu_buffer_length) || !_output_buffer.allocate(_imu_buffer_length) || !_output_vert_buffer.allocate(_imu_buffer_length)) {
printBufferAllocationFailed("IMU and output");
return false;
}
_imu_sample_delayed.time_us = timestamp;
_imu_sample_delayed.delta_vel_clipping[0] = false;
_imu_sample_delayed.delta_vel_clipping[1] = false;
_imu_sample_delayed.delta_vel_clipping[2] = false;
_fault_status.value = 0;
return true;
}
bool EstimatorInterface::isOnlyActiveSourceOfHorizontalAiding(const bool aiding_flag) const
{
return aiding_flag && !isOtherSourceOfHorizontalAidingThan(aiding_flag);
}
bool EstimatorInterface::isOtherSourceOfHorizontalAidingThan(const bool aiding_flag) const
{
const int nb_sources = getNumberOfActiveHorizontalAidingSources();
return aiding_flag ? nb_sources > 1 : nb_sources > 0;
}
int EstimatorInterface::getNumberOfActiveHorizontalAidingSources() const
{
return int(_control_status.flags.gps)
+ int(_control_status.flags.opt_flow)
+ int(_control_status.flags.ev_pos)
+ int(_control_status.flags.ev_vel)
// Combined airspeed and sideslip fusion allows sustained wind relative dead reckoning
// and so is treated as a single aiding source.
+ int(_control_status.flags.fuse_aspd && _control_status.flags.fuse_beta);
}
bool EstimatorInterface::isHorizontalAidingActive() const
{
return getNumberOfActiveHorizontalAidingSources() > 0;
}
void EstimatorInterface::printBufferAllocationFailed(const char *buffer_name)
{
if (buffer_name) {
ECL_ERR("%s buffer allocation failed", buffer_name);
}
}
void EstimatorInterface::print_status()
{
ECL_INFO("imu buffer: %d (%d Bytes)", _imu_buffer.get_length(), _imu_buffer.get_total_size());
ECL_INFO("gps buffer: %d (%d Bytes)", _gps_buffer.get_length(), _gps_buffer.get_total_size());
ECL_INFO("mag buffer: %d (%d Bytes)", _mag_buffer.get_length(), _mag_buffer.get_total_size());
ECL_INFO("baro buffer: %d (%d Bytes)", _baro_buffer.get_length(), _baro_buffer.get_total_size());
ECL_INFO("range buffer: %d (%d Bytes)", _range_buffer.get_length(), _range_buffer.get_total_size());
ECL_INFO("airspeed buffer: %d (%d Bytes)", _airspeed_buffer.get_length(), _airspeed_buffer.get_total_size());
ECL_INFO("flow buffer: %d (%d Bytes)", _flow_buffer.get_length(), _flow_buffer.get_total_size());
ECL_INFO("vision buffer: %d (%d Bytes)", _ext_vision_buffer.get_length(), _ext_vision_buffer.get_total_size());
ECL_INFO("output buffer: %d (%d Bytes)", _output_buffer.get_length(), _output_buffer.get_total_size());
ECL_INFO("output vert buffer: %d (%d Bytes)", _output_vert_buffer.get_length(), _output_vert_buffer.get_total_size());
ECL_INFO("drag buffer: %d (%d Bytes)", _drag_buffer.get_length(), _drag_buffer.get_total_size());
}