-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
99 lines (73 loc) · 3.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#----------------------------------------------------
# Main routine for training and testing GNN models
# Author: Pablo Villanueva Domingo
# Last update: 4/22
#----------------------------------------------------
import time, datetime, psutil
from Source.metalayer import *
from Source.training import *
from Source.plotting import *
from Source.load_data import *
# Main routine to train the neural net
# If testsuite==True, it takes a model already pretrained in the other suite and tests it in the selected one
def main(hparams, verbose = True, testsuite = False):
# Load data and create dataset
dataset = create_dataset(hparams)
node_features = dataset[0].x.shape[1]
# Split dataset among training, validation and testing datasets
train_loader, valid_loader, test_loader = split_datasets(dataset)
# Size of the output of the GNN
if hparams.outmode=="cosmo":
dim_out=2*hparams.pred_params
elif hparams.outmode=="ps":
dim_out=ps_size
# Initialize model
model = GNN(node_features=node_features,
n_layers=hparams.n_layers,
hidden_channels=hparams.hidden_channels,
linkradius=hparams.r_link,
dim_out=dim_out,
only_positions=hparams.only_positions)
model.to(device)
if verbose: print("Model: " + hparams.name_model()+"\n")
# Print the memory (in GB) being used now:
process = psutil.Process()
print("Memory being used (GB):",process.memory_info().rss/1.e9)
# Train the net
if hparams.training:
if verbose: print("Training!\n")
train_losses, valid_losses = training_routine(model, train_loader, valid_loader, hparams, verbose)
# Test the net
if verbose: print("\nTesting!\n")
# If test in other suite, change the suite for loading the model
if testsuite==True:
hparams.simsuite = hparams.flip_suite() # change for loading the model
# Load the trained model
state_dict = torch.load("Models/"+hparams.name_model(), map_location=device)
model.load_state_dict(state_dict)
if testsuite==True: hparams.simsuite = hparams.flip_suite() # change after loading the model
# Test the model
test_loss, rel_err = test(test_loader, model, hparams)
if verbose: print("Test Loss: {:.2e}, Relative error: {:.2e}".format(test_loss, rel_err))
# Plot loss trends
if hparams.training:
plot_losses(train_losses, valid_losses, test_loss, rel_err, hparams)
# Plot true vs predicted cosmo parameters
if hparams.outmode=="cosmo":
plot_out_true_scatter(hparams, "Om", testsuite)
if hparams.pred_params==2:
plot_out_true_scatter(hparams, "Sig", testsuite)
# Plot power spectrum and relative error
elif hparams.outmode=="ps":
plot_ps(hparams)
return test_loss
#--- MAIN ---#
if __name__ == "__main__":
time_ini = time.time()
for path in ["Plots", "Models", "Outputs"]:
if not os.path.exists(path):
os.mkdir(path)
# Load default parameters
from hyperparameters import hparams
main(hparams)
print("Finished. Time elapsed:",datetime.timedelta(seconds=time.time()-time_ini))