-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
wob_click_play.py
executable file
·77 lines (63 loc) · 2.45 KB
/
wob_click_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
import argparse
import gym
import universe
import numpy as np
import torch
import torch.nn.functional as F
from lib import wob_vnc, model_vnc
ENV_NAME = "wob.mini.ClickDialog-v0"
REMOTE_ADDR = 'vnc://localhost:5900+15900'
def step_env(env, action):
idle_count = 0
while True:
obs, reward, is_done, info = env.step([action])
if obs[0] is None:
idle_count += 1
continue
break
return obs[0], reward[0], is_done[0], info, idle_count
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", help="Model file to load")
parser.add_argument("--save", help="Enables screenshots and gives an images prefix")
parser.add_argument("--count", type=int, default=1, help="Count of episodes to play, default=1")
parser.add_argument("--env", default=ENV_NAME, help="Environment name to solve, default=" + ENV_NAME)
parser.add_argument("--verbose", default=False, action='store_true', help="Display every step")
args = parser.parse_args()
env_name = args.env
if not env_name.startswith('wob.mini.'):
env_name = "wob.mini." + env_name
env = gym.make(env_name)
env = universe.wrappers.experimental.SoftmaxClickMouse(env)
if args.save is not None:
env = wob_vnc.MiniWoBPeeker(env, args.save)
env = wob_vnc.MiniWoBCropper(env)
wob_vnc.configure(env, REMOTE_ADDR, fps=5)
net = model_vnc.Model(input_shape=wob_vnc.WOB_SHAPE, n_actions=env.action_space.n)
if args.model:
net.load_state_dict(torch.load(args.model))
env.reset()
steps_count = 0
reward_sum = 0
for round_idx in range(args.count):
action = env.action_space.sample()
step_idx = 0
while True:
obs, reward, done, info, idle_count = step_env(env, action)
if args.verbose:
print(step_idx, reward, done, idle_count, info)
obs_v = torch.tensor(obs)
logits_v = net(obs_v)[0]
policy = F.softmax(logits_v, dim=1).data.numpy()[0]
action = np.random.choice(len(policy), p=policy)
step_idx += 1
reward_sum += reward
steps_count += 1
if done or reward != 0:
print("Round %d done" % round_idx)
break
print("Done %d rounds, mean steps %.2f, mean reward %.3f" % (
args.count, steps_count / args.count, reward_sum / args.count
))
pass