-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathDataset.py
257 lines (213 loc) · 9.08 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file loads and preprocesses the dataset for GATNE model.
"""
import sys
import os
import tqdm
import numpy as np
import logging
import random
from pgl import heter_graph
import pickle as pkl
class Dataset(object):
"""Implementation of Dataset class
This is a simple implementation of loading and processing dataset for GATNE model.
Args:
config: dict, some configure parameters.
"""
def __init__(self, config):
self.train_edges_file = config['data_path'] + 'train.txt'
self.valid_edges_file = config['data_path'] + 'valid.txt'
self.test_edges_file = config['data_path'] + 'test.txt'
self.nodes_file = config['data_path'] + 'nodes.txt'
self.config = config
self.word2index = self.load_word2index()
self.build_graph()
self.valid_data = self.load_test_data(self.valid_edges_file)
self.test_data = self.load_test_data(self.test_edges_file)
def build_graph(self):
"""Build pgl heterogeneous graph.
"""
edge_data_by_type, all_edges, all_nodes = self.load_training_data(
self.train_edges_file,
slf_loop=self.config['slf_loop'],
symmetry_edge=self.config['symmetry_edge'])
num_nodes = len(all_nodes)
node_features = {
'index': np.array(
[i for i in range(num_nodes)], dtype=np.int64).reshape(-1, 1)
}
self.graph = heter_graph.HeterGraph(
num_nodes=num_nodes,
edges=edge_data_by_type,
node_types=None,
node_feat=node_features)
self.edge_types = sorted(self.graph.edge_types_info())
logging.info('total %d nodes are loaded' % (self.graph.num_nodes))
def load_training_data(self, file_, slf_loop=True, symmetry_edge=True):
"""Load train data from file and preprocess them.
Args:
file_: str, file name for loading data
slf_loop: bool, if true, add self loop edge for every node
symmetry_edge: bool, if true, add symmetry edge for every edge
"""
logging.info('loading data from %s' % file_)
edge_data_by_type = dict()
all_edges = list()
all_nodes = list()
with open(file_, 'r') as reader:
for line in reader:
words = line.strip().split(' ')
if words[0] not in edge_data_by_type:
edge_data_by_type[words[0]] = []
src, dst = words[1], words[2]
edge_data_by_type[words[0]].append((src, dst))
all_edges.append((src, dst))
all_nodes.append(src)
all_nodes.append(dst)
if symmetry_edge:
edge_data_by_type[words[0]].append((dst, src))
all_edges.append((dst, src))
all_nodes = list(set(all_nodes))
all_edges = list(set(all_edges))
# edge_data_by_type['Base'] = all_edges
if slf_loop:
for e_type in edge_data_by_type.keys():
for n in all_nodes:
edge_data_by_type[e_type].append((n, n))
# remapping to index
edges_by_type = {}
for edge_type, edges in edge_data_by_type.items():
res_edges = []
for edge in edges:
res_edges.append(
(self.word2index[edge[0]], self.word2index[edge[1]]))
edges_by_type[edge_type] = res_edges
return edges_by_type, all_edges, all_nodes
def load_test_data(self, file_):
"""Load testing data from file.
"""
logging.info('loading data from %s' % file_)
true_edge_data_by_type = {}
fake_edge_data_by_type = {}
with open(file_, 'r') as reader:
for line in reader:
words = line.strip().split(' ')
src, dst = self.word2index[words[1]], self.word2index[words[2]]
e_type = words[0]
if int(words[3]) == 1: # true edges
if e_type not in true_edge_data_by_type:
true_edge_data_by_type[e_type] = list()
true_edge_data_by_type[e_type].append((src, dst))
else: # fake edges
if e_type not in fake_edge_data_by_type:
fake_edge_data_by_type[e_type] = list()
fake_edge_data_by_type[e_type].append((src, dst))
return (true_edge_data_by_type, fake_edge_data_by_type)
def load_word2index(self):
"""Load words(nodes) from file and map to index.
"""
word2index = {}
with open(self.nodes_file, 'r') as reader:
for index, line in enumerate(reader):
node = line.strip()
word2index[node] = index
return word2index
def generate_walks(self):
"""Generate random walks for every edge type.
"""
all_walks = {}
for e_type in self.edge_types:
layer_walks = self.simulate_walks(
edge_type=e_type,
num_walks=self.config['num_walks'],
walk_length=self.config['walk_length'])
all_walks[e_type] = layer_walks
return all_walks
def simulate_walks(self, edge_type, num_walks, walk_length, schema=None):
"""Generate random walks in specified edge type.
"""
walks = []
nodes = list(range(0, self.graph[edge_type].num_nodes))
for walk_iter in tqdm.tqdm(range(num_walks)):
random.shuffle(nodes)
for node in nodes:
walk = self.graph[edge_type].random_walk(
[node], max_depth=walk_length - 1)
for i in range(len(walk)):
walks.append(walk[i])
return walks
def generate_pairs(self, all_walks):
"""Generate word pairs for training.
"""
logging.info(['edge_types before generate pairs', self.edge_types])
pairs = []
skip_window = self.config['win_size'] // 2
for layer_id, e_type in enumerate(self.edge_types):
walks = all_walks[e_type]
for walk in tqdm.tqdm(walks):
for i in range(len(walk)):
for j in range(1, skip_window + 1):
if i - j >= 0 and walk[i] != walk[i - j]:
neg_nodes = self.graph[e_type].sample_nodes(
self.config['neg_num'])
pairs.append(
(walk[i], walk[i - j], *neg_nodes, layer_id))
if i + j < len(walk) and walk[i] != walk[i + j]:
neg_nodes = self.graph[e_type].sample_nodes(
self.config['neg_num'])
pairs.append(
(walk[i], walk[i + j], *neg_nodes, layer_id))
return pairs
def fetch_batch(self, pairs, batch_size, for_test=False):
"""Produce batch pairs data for training.
"""
np.random.shuffle(pairs)
n_batches = (len(pairs) + (batch_size - 1)) // batch_size
neg_num = len(pairs[0]) - 3
result = []
for i in range(1, n_batches):
batch_pairs = np.array(
pairs[batch_size * (i - 1):batch_size * i], dtype=np.int64)
x = batch_pairs[:, 0].reshape(-1, ).astype(np.int64)
y = batch_pairs[:, 1].reshape(-1, 1, 1).astype(np.int64)
neg = batch_pairs[:, 2:2 + neg_num].reshape(-1, neg_num,
1).astype(np.int64)
t = batch_pairs[:, -1].reshape(-1, 1).astype(np.int64)
result.append((x, y, neg, t))
return result
if __name__ == "__main__":
config = {
'data_path': './data/youtube/',
'train_pairs_file': 'train_pairs.pkl',
'slf_loop': True,
'symmetry_edge': True,
'num_walks': 20,
'walk_length': 10,
'win_size': 5,
'neg_num': 5,
}
log_format = '%(asctime)s-%(levelname)s-%(name)s: %(message)s'
logging.basicConfig(level='INFO', format=log_format)
dataset = Dataset(config)
logging.info('generating walks')
all_walks = dataset.generate_walks()
logging.info('finishing generate walks')
logging.info(['length of all walks: ', all_walks.keys()])
train_pairs = dataset.generate_pairs(all_walks)
pkl.dump(train_pairs,
open(config['data_path'] + config['train_pairs_file'], 'wb'))
logging.info('finishing generate train_pairs')