Skip to content

Latest commit

 

History

History

dgi

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

DGI: Deep Graph Infomax

Deep Graph Infomax (DGI) is a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs---both derived using established graph convolutional network architectures.

Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can be found in the paper.

Dependencies

  • paddlepaddle>=1.6
  • pgl

Performance

We use DGI to pretrain embeddings for each nodes. Then we fix the embedding to train a node classifier.

Dataset Accuracy
Cora ~81%
Pubmed ~77.6%
Citeseer ~71.3%

How to run

For examples, use gpu to train gcn on cora dataset.

python dgi.py --dataset cora --use_cuda
python train.py --dataset cora --use_cuda

Hyperparameters

  • dataset: The citation dataset "cora", "citeseer", "pubmed".
  • use_cuda: Use gpu if assign use_cuda.