As the core part of the Paddle.js ecosystem, this package hosts @paddlejs/paddlejs-core
,
which is responsible for the operation of the inference process of the entire engine,
and provides interfaces for backend registration and environment variable registration.
When registering the engine you need to configure the engine, you must configure the items modelPath
, feedShape
, all items are configured as follows.
// model struture
enum GraphType {
SingleOutput = 'single',
MultipleOutput = 'multiple',
MultipleInput = 'multipleInput'
}
interface RunnerConfig {
modelPath: string; // model path (local or web address)
modelName?: string; // model name
feedShape: { // input feed shape
fc?: number; // feed channel, default is 3.
fw: number; // feed width
fh: number; // feed height
};
fill?: Color; // the color used to padding
mean?: number[]; // mean value
std?: number[]; // standard deviation
bgr?: boolean; // whether the image channel alignment is BGR, default is false (RGB)
type?: GraphType; // model structure, default is singleInput and singleOutput
needPreheat?: boolean; // whether to warm up the engine during initialization, default is true
plugins?: { // register model topology transform plugin
preTransforms?: Transformer[]; // transform before creating network topology
transforms?: Transformer[]; // transform when traversing model layers
postTransforms?: Transformer[]; // transform the model topology diagram after it has been created
};
}
You can install this package via npm., @paddlejs/paddlejs-core
// Import @paddlejs/paddlejs-core
import { Runner } from '@paddlejs/paddlejs-core';
// Import the registered WebGL backend.
import '@paddlejs/paddlejs-backend-webgl';
const runner = new Runner({
modelPath: '/model/mobilenetv2', // model path, e.g. http://xx.cc/path, http://xx.cc/path/model.json, /localModelDir/model.json, /localModelDir
feedShape: { // input shape
fw: 256,
fh: 256
},
fill?: '#fff', // fill color when resize image, default value is #fff
webglFeedProcess?: true // Turn on `webglFeedProcess` to convert all pre-processing parts of the model to shader processing, and keep the original image texture.
});
// init runner
await runner.init();
// predict and get result
const res = await runner.predict(mediadata, callback?);
Note: If you are importing the Core package, you also need to import a backend (e.g., paddlejs-backend-webgl, paddlejs-backend-webgpu).
-
@paddlejs/paddlejs-core
provides the interfaceregisterOp
, through which developers can register custom operators. -
@paddlejs/paddlejs-core
provides the global variableenv
module, through which developers can register environment variables, using the following method:// set env key/flag and value env.set(key, value); // get value by key/flag env.get(key);
-
transform model stucture
By registering the model transformers through
runnerConfig.plugins
, developers can make changes (add, delete, change) to the model structure, such as pruning to remove unnecessary layers to speed up inference, or adding custom layers to the end of the model and turning post-processing into layers in the model to speed up post-processing. -
Turn on performance flag for acceleration
Paddle.js currently provides five performance
flags
, which can be set totrue
if you want to enable inference acceleration.env.set('webgl_pack_channel', true);
Turn on
webgl_pack_channel
and the eligible conv2d will use packing shader to perform packing transformations to improve performance through vectorization calculations.env.set('webgl_force_half_float_texture', true);
Enable
webgl_force_half_float_texture
, feature map uses half floatHALF_FLOAT
.env.set('webgl_gpu_pipeline', true);
Turn on
webgl_gpu_pipeline
to convert all model pre-processing parts to shader processing, and render the model results toWebGL2RenderingContext
of webgl backend on screen. Developers can perform model post-processing on the output texture and the original image texture to achieve theGPU_PIPELINE
: pre-processing + inference + post-processing (rendering processing) to get high performance. Take humanseg model case for reference.env.set('webgl_pack_output', true);
Enable
webgl_pack_output
to migrate theNHWC
toNCHW
layout transformation of the model output to the GPU, andpack
to a four-channel layout to reduce loop processing when reading the results from the GPU