-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
cuda_device_function.h
209 lines (182 loc) · 6.94 KB
/
cuda_device_function.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cuda.h>
// NOTE(): support float16 to half in header file.
#define PADDLE_CUDA_FP16
#include <cuda_fp16.h>
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace platform {
#if CUDA_VERSION < 9000
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif
inline static int RoundToPowerOfTwo(int dim) {
if (dim > 512) {
return 1024;
} else if (dim > 256) {
return 512;
} else if (dim > 128) {
return 256;
} else if (dim > 64) {
return 128;
} else if (dim > 32) {
return 64;
} else {
return 32;
}
}
#define CUDA_LAUNCH_KERNEL_BASE(dim, ...) \
case (dim): { \
constexpr auto kPowerOfTwoDim = (dim); \
__VA_ARGS__; \
} break
#define CUDA_LAUNCH_KERNEL_HELPER(...) \
CUDA_LAUNCH_KERNEL_BASE(1024, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(512, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(32, ##__VA_ARGS__);
template <typename T>
__forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
int delta,
int width = warpSize) {
#if CUDA_VERSION < 9000
return __shfl_down(val, delta, width);
#else
return __shfl_down_sync(mask, val, static_cast<unsigned>(delta), width);
#endif
}
template <typename T>
__forceinline__ __device__ T CudaShuffleXorSync(unsigned mask, T val,
int width = warpSize) {
#if CUDA_VERSION < 9000
return __shfl_xor(val, width);
#else
return __shfl_xor_sync(mask, val, width);
#endif
}
// CUDA 9.0 have native compatible float16 shfl_down
#if CUDA_VERSION < 9000
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
float16 val, int delta,
int width) {
return float16(
__shfl_down(static_cast<half>(val), static_cast<unsigned>(delta), width));
}
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
float16 val, int width) {
return float16(__shfl_xor(static_cast<half>(val), width));
}
#else
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
float16 val, int delta,
int width) {
return float16(__shfl_down_sync(mask, static_cast<half>(val),
static_cast<unsigned>(delta), width));
}
template <>
__forceinline__ __device__ paddle::platform::complex64 CudaShuffleDownSync(
unsigned mask, paddle::platform::complex64 val, int delta, int width) {
float real = static_cast<float>(__shfl_down_sync(
mask, static_cast<float>(val.real), static_cast<unsigned>(delta), width));
float imag = static_cast<float>(__shfl_down_sync(
mask, static_cast<float>(val.imag), static_cast<unsigned>(delta), width));
return paddle::platform::complex64(real, imag);
}
template <>
__forceinline__ __device__ paddle::platform::complex128 CudaShuffleDownSync(
unsigned mask, paddle::platform::complex128 val, int delta, int width) {
double real = static_cast<double>(
__shfl_down_sync(mask, static_cast<double>(val.real),
static_cast<unsigned>(delta), width));
double imag = static_cast<double>(
__shfl_down_sync(mask, static_cast<double>(val.imag),
static_cast<unsigned>(delta), width));
return paddle::platform::complex128(real, imag);
}
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
float16 val, int width) {
return float16(__shfl_xor_sync(mask, static_cast<half>(val), width));
}
template <>
__forceinline__ __device__ paddle::platform::complex64 CudaShuffleXorSync(
unsigned mask, paddle::platform::complex64 val, int width) {
float real = static_cast<float>(
__shfl_xor_sync(mask, static_cast<float>(val.real), width));
float imag = static_cast<float>(
__shfl_xor_sync(mask, static_cast<float>(val.imag), width));
return paddle::platform::complex64(real, imag);
}
template <>
__forceinline__ __device__ paddle::platform::complex128 CudaShuffleXorSync(
unsigned mask, paddle::platform::complex128 val, int width) {
double real = static_cast<double>(
__shfl_xor_sync(mask, static_cast<double>(val.real), width));
double imag = static_cast<double>(
__shfl_xor_sync(mask, static_cast<double>(val.imag), width));
return paddle::platform::complex128(real, imag);
}
#endif
template <typename T>
__forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line,
int width = 32) {
#if CUDA_VERSION < 9000
return __shfl(val, src_line, width);
#else
return __shfl_sync(mask, val, src_line, width);
#endif
}
template <typename T>
HOSTDEVICE T Infinity() {
return INFINITY;
}
template <typename T>
__device__ T reduceSum(T val, int tid, int len) {
// NOTE(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
const int warpSize = 32;
__shared__ T shm[warpSize];
unsigned mask = 0u;
CREATE_SHFL_MASK(mask, tid < len);
for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += platform::CudaShuffleDownSync(mask, val, offset);
if (tid < warpSize) shm[tid] = 0;
__syncthreads();
if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
}
__syncthreads();
CREATE_SHFL_MASK(mask, tid < warpSize);
if (tid < warpSize) {
val = shm[tid];
for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += platform::CudaShuffleDownSync(mask, val, offset);
}
return val;
}
} // namespace platform
} // namespace paddle