-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
stat.py
473 lines (407 loc) · 19.3 KB
/
stat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define statistical functions of a tensor
import numpy as np
from ..static import Variable
from ..fluid.layer_helper import LayerHelper
from ..framework import core
from .search import where
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
import paddle
from paddle import _C_ops
__all__ = []
def mean(x, axis=None, keepdim=False, name=None):
"""
Computes the mean of the input tensor's elements along ``axis``.
Args:
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform mean
calculations. ``axis`` should be int, list(int) or tuple(int). If
``axis`` is a list/tuple of dimension(s), mean is calculated along
all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
should be in range [-D, D), where D is the dimensions of ``x`` . If
``axis`` or element(s) of ``axis`` is less than 0, it works the
same way as :math:`axis + D` . If ``axis`` is None, mean is
calculated over all elements of ``x``. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of average along ``axis`` of ``x``, with the same data
type as ``x``.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.]],
[[13., 14., 15., 16.],
[17., 18., 19., 20.],
[21., 22., 23., 24.]]])
out1 = paddle.mean(x)
# [12.5]
out2 = paddle.mean(x, axis=-1)
# [[ 2.5 6.5 10.5]
# [14.5 18.5 22.5]]
out3 = paddle.mean(x, axis=-1, keepdim=True)
# [[[ 2.5]
# [ 6.5]
# [10.5]]
# [[14.5]
# [18.5]
# [22.5]]]
out4 = paddle.mean(x, axis=[0, 2])
# [ 8.5 12.5 16.5]
"""
if isinstance(axis, int):
axis = [axis]
reduce_all = True if axis is None \
or len(axis)==0 \
or len(axis) == len(x.shape) else False
if axis is None or len(axis) == 0:
axis = [0]
if paddle.in_dynamic_mode():
return _C_ops.reduce_mean(x, 'dim', axis, 'keep_dim', keepdim,
'reduce_all', reduce_all)
check_variable_and_dtype(x, 'x/input',
['uint16', 'float16', 'float32', 'float64'],
'mean/reduce_mean')
check_type(axis, 'axis/dim', (int, list, tuple), 'mean/reduce_mean')
if isinstance(axis, (list, tuple)):
for item in axis:
check_type(item, 'elements of axis/dim', (int), 'mean/reduce_mean')
helper = LayerHelper('mean', **locals())
attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
out = helper.create_variable_for_type_inference(x.dtype)
helper.append_op(
type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
return out
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
"""
Computes the variance of ``x`` along ``axis`` .
Args:
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
variance calculations. ``axis`` should be int, list(int) or
tuple(int). If ``axis`` is a list/tuple of dimension(s), variance
is calculated along all element(s) of ``axis`` . ``axis`` or
element(s) of ``axis`` should be in range [-D, D), where D is the
dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less
than 0, it works the same way as :math:`axis + D` . If ``axis`` is
None, variance is calculated over all elements of ``x``. Default
is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of variance along ``axis`` of ``x``, with the same data
type as ``x``.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
out1 = paddle.var(x)
# [2.66666667]
out2 = paddle.var(x, axis=1)
# [1. 4.33333333]
"""
if not paddle.in_dynamic_mode():
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')
u = mean(x, axis, True, name)
out = paddle.sum((x - u)**2, axis, keepdim=keepdim, name=name)
n = paddle.cast(paddle.numel(x), x.dtype) \
/ paddle.cast(paddle.numel(out), x.dtype)
if unbiased:
one_const = paddle.ones([1], x.dtype)
n = where(n > one_const, n - 1., one_const)
out /= n
return out
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
"""
Computes the standard-deviation of ``x`` along ``axis`` .
Args:
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
standard-deviation calculations. ``axis`` should be int, list(int)
or tuple(int). If ``axis`` is a list/tuple of dimension(s),
standard-deviation is calculated along all element(s) of ``axis`` .
``axis`` or element(s) of ``axis`` should be in range [-D, D),
where D is the dimensions of ``x`` . If ``axis`` or element(s) of
``axis`` is less than 0, it works the same way as :math:`axis + D` .
If ``axis`` is None, standard-deviation is calculated over all
elements of ``x``. Default is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the standard-deviation is calculated via the
unbiased estimator. If ``unbiased`` is True, the divisor used in
the computation is :math:`N - 1`, where :math:`N` represents the
number of elements along ``axis`` , otherwise the divisor is
:math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of standard-deviation along ``axis`` of ``x``, with the
same data type as ``x``.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
out1 = paddle.std(x)
# [1.63299316]
out2 = paddle.std(x, axis=1)
# [1. 2.081666]
"""
if not paddle.in_dynamic_mode():
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')
out = var(**locals())
return paddle.sqrt(out)
def numel(x, name=None):
"""
Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
or a scalar value in imperative mode
Args:
x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
Returns:
Tensor: The number of elements for the input Tensor.
Examples:
.. code-block:: python
import paddle
x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
numel = paddle.numel(x) # 140
"""
if paddle.in_dynamic_mode():
return _C_ops.size(x)
if not isinstance(x, Variable):
raise TypeError("x must be a Tensor in numel")
helper = LayerHelper('numel', **locals())
out = helper.create_variable_for_type_inference(
dtype=core.VarDesc.VarType.INT64)
helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
return out
def median(x, axis=None, keepdim=False, name=None):
"""
Compute the median along the specified axis.
Args:
x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.
Examples:
.. code-block:: python
import paddle
x = paddle.arange(12).reshape([3, 4])
# x is [[0 , 1 , 2 , 3 ],
# [4 , 5 , 6 , 7 ],
# [8 , 9 , 10, 11]]
y1 = paddle.median(x)
# y1 is [5.5]
y2 = paddle.median(x, axis=0)
# y2 is [4., 5., 6., 7.]
y3 = paddle.median(x, axis=1)
# y3 is [1.5, 5.5, 9.5]
y4 = paddle.median(x, axis=0, keepdim=True)
# y4 is [[4., 5., 6., 7.]]
"""
if not isinstance(x, Variable):
raise TypeError("In median, the input x should be a Tensor.")
is_flatten = axis is None
dims = len(x.shape)
if is_flatten:
x = paddle.flatten(x)
axis = 0
else:
if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
raise ValueError(
"In median, axis should be none or an integer in range [-rank(x), rank(x))."
)
if axis < 0:
axis += dims
sz = x.shape[axis]
kth = sz >> 1
tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
if sz & 1 == 0:
out_tensor = paddle.slice(
tensor_topk, axes=[axis], starts=[kth - 1],
ends=[kth]) + paddle.slice(
tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
else:
out_tensor = paddle.cast(
paddle.slice(
tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]),
dtype=dtype)
out_tensor = out_tensor + paddle.sum(
paddle.cast(
paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True)
if not keepdim or is_flatten:
if not is_flatten:
newshape = x.shape[:axis] + x.shape[axis + 1:]
elif not keepdim:
newshape = [1]
else:
newshape = [1] * dims
else:
newshape = out_tensor.shape
out_tensor = out_tensor.reshape(newshape, name=name)
return out_tensor
def quantile(x, q, axis=None, keepdim=False):
"""
Compute the quantile of the input along the specified axis.
Args:
x (Tensor): The input Tensor, it's data type can be float32, float64.
q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
each q will be calculated and the first dimension of output is same to the number of ``q`` .
axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
If ``axis`` is a list, quantile is calculated over all elements of given axises.
If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, results of quantile along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.
Examples:
.. code-block:: python
import paddle
x = paddle.randn((2,3))
#[[-1.28740597, 0.49533170, -1.00698614],
# [-1.11656201, -1.01010525, -2.23457789]])
y1 = paddle.quantile(x, q=0.5, axis=[0, 1])
# y1 = -1.06333363
y2 = paddle.quantile(x, q=0.5, axis=1)
# y2 = [-1.00698614, -1.11656201]
y3 = paddle.quantile(x, q=[0.3, 0.5], axis=1)
# y3 =[[-1.11915410, -1.56376839],
# [-1.00698614, -1.11656201]]
y4 = paddle.quantile(x, q=0.8, axis=1, keepdim=True)
# y4 = [[-0.10559537],
# [-1.05268800]])
"""
if not isinstance(x, Variable):
raise TypeError("input x should be a Tensor.")
dims = len(x.shape)
out_shape = x.shape
if axis is None:
x = paddle.flatten(x)
axis = 0
out_shape = [1] * dims
else:
if isinstance(axis, list):
if (len(axis) <= 0):
raise ValueError("axis should not be empty")
axis_src, axis_dst = [], []
for axis_single in axis:
if not isinstance(axis_single, int) or not (
axis_single < dims and axis_single >= -dims):
raise ValueError(
"Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
)
if axis_single < 0:
axis_single = axis_single + dims
axis_src.append(axis_single)
out_shape[axis_single] = 1
axis_dst = list(range(-len(axis), 0))
x = paddle.moveaxis(x, axis_src, axis_dst)
x = paddle.flatten(x, axis_dst[0], axis_dst[-1])
axis = axis_dst[0]
else:
if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
raise ValueError(
"Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
)
if axis < 0:
axis += dims
out_shape[axis] = 1
indices = []
if isinstance(q, (int, float)):
if q < 0 or q > 1:
raise ValueError("q should be in range [0, 1]")
indices.append(q * (x.shape[axis] - 1))
elif isinstance(q, (list, tuple)):
if len(q) <= 0:
raise ValueError("q should not be empty")
for q_num in q:
if q_num < 0 or q_num > 1:
raise ValueError("q should be in range [0, 1]")
indices.append(q_num * (x.shape[axis] - 1))
else:
raise TypeError("Type of q should be int, float, list or tuple.")
indices = paddle.to_tensor(indices).astype(paddle.float32)
sorted_tensor = paddle.sort(x, axis)
indices_below = paddle.floor(indices).astype(paddle.int32)
indices_upper = paddle.ceil(indices).astype(paddle.int32)
outputs = []
def expand_dim(indices, sorted_tensor_shape, axis):
assert axis < len(list(sorted_tensor_shape))
expanded_shape = [1] * len(list(sorted_tensor_shape))
expanded_shape[axis] = len(indices)
expanded_shape = tuple(expanded_shape)
indices = indices.reshape(expanded_shape)
return indices
# TODO(chenjianye): replace the for-loop to directly take elements.
for i in range(len(indices)):
if (indices_upper[i] != indices_below[i]):
tensor_below = paddle.take_along_axis(
sorted_tensor,
expand_dim(indices_below[i], sorted_tensor.shape, axis), axis)
tensor_upper = paddle.take_along_axis(
sorted_tensor,
expand_dim(indices_upper[i], sorted_tensor.shape, axis), axis)
weights = (indices[i] - indices_below[i]).astype(x.dtype)
out = paddle.lerp(tensor_below, tensor_upper, weights)
else:
out = paddle.take_along_axis(
sorted_tensor,
expand_dim(indices_below[i], sorted_tensor.shape, axis), axis)
if not keepdim:
out = paddle.squeeze(out, axis=axis)
else:
out = out.reshape(out_shape)
outputs.append(out)
if isinstance(q, (list, tuple)):
return paddle.stack(outputs, 0)
else:
return outputs[0]