-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
MixedLayer.cpp
176 lines (148 loc) · 5.1 KB
/
MixedLayer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MixedLayer.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_LAYER(mixed, MixedLayer);
bool MixedLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
if (!Layer::init(layerMap, parameterMap)) return false;
CHECK_EQ(inputLayers_.size(), parameters_.size());
projections_.resize(inputLayers_.size());
for (size_t i = 0; i < inputLayers_.size(); i++) {
if (config_.inputs(i).has_proj_conf()) {
projections_[i].reset(Projection::create(
config_.inputs(i).proj_conf(), parameters_[i], useGpu_));
} else {
CHECK(!parameters_[i]) << "should no parameters for operators";
}
}
for (auto& operator_conf : config_.operator_confs()) {
for (auto& input_index : operator_conf.input_indices()) {
CHECK(!config_.inputs(input_index).has_proj_conf());
}
operators_.emplace_back(Operator::create(operator_conf, useGpu_));
}
/* initialize biases_ */
if (biasParameter_.get() != NULL) {
sharedBias_ = config_.shared_biases();
size_t psize = config_.bias_size();
biases_ = std::unique_ptr<Weight>(new Weight(1, psize, biasParameter_));
}
return true;
}
void MixedLayer::prefetch() {
for (size_t i = 0; i != inputLayers_.size(); ++i) {
if (projections_[i]) {
projections_[i]->prefetch(&getInput(i));
}
}
}
void MixedLayer::resetState() {
for (auto& proj : projections_) {
if (proj) {
proj->resetState();
}
}
}
void MixedLayer::setState(LayerStatePtr state) {
CHECK(projectionStateMatrixSize_.size() == projections_.size())
<< "projection size mis-match";
int start = 0;
LayerStatePtr statePtr = std::make_shared<LayerState>();
for (int i = 0; i < (int)projectionStateMatrixSize_.size(); i++) {
if (projectionStateMatrixSize_[i] > 0) {
statePtr->value.clear();
for (int j = start; j < start + projectionStateMatrixSize_[i]; j++) {
statePtr->value.push_back(state->value[j]);
}
projections_[i]->setState(statePtr);
start += projectionStateMatrixSize_[i];
}
}
CHECK((int)state->value.size() == start) << "state matrix size mis-match";
}
// Return state which consists of all projections states
LayerStatePtr MixedLayer::getState() {
bool init = projectionStateMatrixSize_.size() == 0;
LayerStatePtr res = std::make_shared<LayerState>();
for (int i = 0; i < (int)projections_.size(); i++) {
LayerStatePtr statePtr =
projections_[i] ? projections_[i]->getState() : nullptr;
int stateSize = statePtr == nullptr ? 0 : statePtr->value.size();
if (init) {
projectionStateMatrixSize_.push_back(stateSize);
} else {
CHECK(projectionStateMatrixSize_[i] == stateSize)
<< "state matrix size mis-match";
}
if (statePtr != nullptr) {
for (auto& matrixPtr : statePtr->value) {
res->value.push_back(matrixPtr);
}
}
}
return res;
}
void MixedLayer::forward(PassType passType) {
Layer::forward(passType);
int batchSize = getInput(0).getBatchSize();
int size = getSize();
{
REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
resetOutput(batchSize, size);
}
MatrixPtr outV = getOutputValue();
for (size_t i = 0; i != inputLayers_.size(); ++i) {
if (projections_[i]) {
projections_[i]->forward(&getInput(i), &output_, passType);
}
}
std::vector<const Argument*> ins;
for (auto& op : operators_) {
ins.clear();
for (auto& input_index : op->getConfig().input_indices()) {
ins.push_back(&getInput(input_index));
}
op->forward(ins, &output_, passType);
}
/* add the bias-vector */
if (biases_.get() != NULL) {
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
outV->addBias(*(biases_->getW()), 1, sharedBias_);
}
/* activation */ {
REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
forwardActivation();
}
}
void MixedLayer::backward(const UpdateCallback& callback) {
/* Do activation */ {
REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
backwardActivation();
}
if (biases_ && biases_->getWGrad()) {
REGISTER_TIMER_INFO("BpBiasTimer", getName().c_str());
biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBias_);
/* Increasing the number of gradient */
biases_->getParameterPtr()->incUpdate(callback);
}
for (size_t i = 0; i != inputLayers_.size(); ++i) {
if (projections_[i]) {
projections_[i]->backward(callback);
}
}
for (auto& op : operators_) {
op->backward();
}
}
} // namespace paddle