-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
vision.py
532 lines (459 loc) · 20.7 KB
/
vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, Literal
import paddle
from paddle import _C_ops, in_dynamic_mode
from paddle.base.framework import (
in_dynamic_or_pir_mode,
in_pir_mode,
)
from ...base.data_feeder import check_variable_and_dtype
from ...base.layer_helper import LayerHelper
from ...common_ops_import import Variable
from ...device import get_cudnn_version, is_compiled_with_rocm
if TYPE_CHECKING:
from paddle import Tensor
from paddle._typing import DataLayout2D, ShapeLike
__all__ = []
def affine_grid(
theta: Tensor,
out_shape: ShapeLike,
align_corners: bool = True,
name: str | None = None,
) -> Tensor:
"""
It generates a grid of (x,y) or (x,y,z) coordinates using the parameters of
the affine transformation that correspond to a set of points where
the input feature map should be sampled to produce the transformed
output feature map.
Args:
theta (Tensor): A tensor with shape [N, 2, 3] or [N, 3, 4]. It contains a batch of affine transform parameters.
The data type can be float32 or float64.
out_shape (Tensor | list | tuple): Type can be a 1-D Tensor, list, or tuple. It is used to represent the shape of the output in an affine transformation, in the format ``[N, C, H, W]`` or ``[N, C, D, H, W]``.
When the format is ``[N, C, H, W]``, it represents the batch size, number of channels, height and width. When the format is ``[N, C, D, H, W]``, it represents the batch size, number of channels, depth, height and width.
The data type must be int32.
align_corners(bool, optional): if True, aligns the centers of the 4 (4D) or 8 (5D) corner pixels of the input and output tensors, and preserves the value of the corner pixels. Default: True
name(str|None, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, A Tensor with shape [batch_size, H, W, 2] or [batch, D, H, W, 3] while ('D')'H', 'W' are the (depth)height, width of feature map in affine transformation. The data type is the same as `theta`.
Examples:
.. code-block:: python
>>> import paddle
>>> import paddle.nn.functional as F
>>> # theta.shape = [1, 2, 3]
>>> theta = paddle.to_tensor([[[-0.7, -0.4, 0.3],
... [ 0.6, 0.5, 1.5]]], dtype="float32")
>>> y_t = F.affine_grid(
... theta,
... [1, 2, 3, 3],
... align_corners=False
... )
>>> print(y_t)
Tensor(shape=[1, 3, 3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
[[[[ 1.03333330, 0.76666665],
[ 0.56666672, 1.16666663],
[ 0.10000002, 1.56666672]],
[[ 0.76666665, 1.09999990],
[ 0.30000001, 1.50000000],
[-0.16666666, 1.90000010]],
[[ 0.50000000, 1.43333328],
[ 0.03333333, 1.83333337],
[-0.43333334, 2.23333335]]]])
"""
if not isinstance(theta, (Variable, paddle.pir.Value)):
raise TypeError("The theta should be a Tensor.")
cudnn_version = get_cudnn_version()
if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
use_cudnn = True
else:
use_cudnn = False
if theta.shape[1] == 3:
use_cudnn = False
if is_compiled_with_rocm():
use_cudnn = (
False # ROCM platform do not have MIOPEN kernel for affine_grid
)
if in_dynamic_mode():
_out_shape = (
out_shape.tolist() if isinstance(out_shape, Variable) else out_shape
)
theta = theta._use_gpudnn(use_cudnn)
return _C_ops.affine_grid(theta, _out_shape, align_corners)
elif in_pir_mode():
return _C_ops.affine_grid(
theta,
out_shape,
align_corners,
)
else:
helper = LayerHelper('affine_grid', **locals())
check_variable_and_dtype(
theta, 'theta', ['float32', 'float64'], 'affine_grid'
)
out = helper.create_variable_for_type_inference(dtype=theta.dtype)
ipts = {'Theta': theta}
attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
if isinstance(out_shape, Variable):
ipts['OutputShape'] = out_shape
check_variable_and_dtype(
out_shape, 'out_shape', ['int32'], 'affine_grid'
)
else:
attrs['output_shape'] = out_shape
helper.append_op(
type='affine_grid',
inputs=ipts,
outputs={'Output': out},
attrs=None if len(attrs) == 0 else attrs,
)
return out
def grid_sample(
x: Tensor,
grid: Tensor,
mode: str = 'bilinear',
padding_mode: Literal["zeros", "reflection", "border"] = 'zeros',
align_corners: bool = True,
name: str | None = None,
) -> Tensor:
"""
Sample input X by using bilinear interpolation or
nearest interpolation based on flow field grid, which is usually
generated by :code:`affine_grid` . When the input X is 4-D Tensor,
the grid of shape [N, H, W, 2] is the concatenation of (x, y)
coordinates with shape [N, H, W] each, where x is indexing the 4th
dimension (in width dimension) of input data x and y is indexing
the 3rd dimension (in height dimension), finally results is the
bilinear interpolation or nearest value of 4 nearest corner
points. The output tensor shape will be [N, C, H, W]. When the input X
is 5-D Tensor, the grid of shape [N, D, H, W, 3] is the concatenation
of (x, y, z) coordinates with shape [N, D, H, W] each, where x is
indexing the 5th dimension (in width dimension) of input data x, y is
indexing the 4th dimension (in height dimension) and z is indexing the
3rd dimension (in depth dimension) finally results is the bilinear
interpolation or nearest value of 8 nearest corner points. The output
tensor shape will be [N, C, D, H, W].
Step 1:
Get (x, y) grid coordinates and scale to [0, H-1/W-1].
.. code-block:: text
grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
Step 2:
Indices input data X with grid (x, y) in each [H, W] area, and bilinear
interpolate point value by 4 nearest points or nearest interpolate point value
by nearest point.
.. code-block:: text
wn ------- y_n ------- en
| | |
| d_n |
| | |
x_w --d_w-- grid--d_e-- x_e
| | |
| d_s |
| | |
ws ------- y_s ------- wn
For bilinear interpolation:
x_w = floor(x) // west side x coord
x_e = x_w + 1 // east side x coord
y_n = floor(y) // north side y coord
y_s = y_s + 1 // south side y coord
d_w = grid_x - x_w // distance to west side
d_e = x_e - grid_x // distance to east side
d_n = grid_y - y_n // distance to north side
d_s = y_s - grid_y // distance to south side
wn = X[:, :, y_n, x_w] // north-west point value
en = X[:, :, y_n, x_e] // north-east point value
ws = X[:, :, y_s, x_w] // south-east point value
es = X[:, :, y_s, x_w] // north-east point value
output = wn * d_e * d_s + en * d_w * d_s
+ ws * d_e * d_n + es * d_w * d_n
Args:
x(Tensor): The input tensor, which is a 4-d tensor with shape
[N, C, H, W] or a 5-d tensor with shape [N, C, D, H, W],
N is the batch size, C is the channel number,
D, H and W is the feature depth, height and width.
The data type is float32 or float64.
grid(Tensor): Input grid tensor, which is a 4-d tensor with shape [N, grid_H,
grid_W, 2] or a 5-d tensor with shape [N, grid_D, grid_H,
grid_W, 3]. The data type is float32 or float64.
mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
Default: 'bilinear'.
padding_mode(str, optional) The padding method used when source index
is out of input images. It can be 'zeros', 'reflection' and 'border'.
Default: zeros.
align_corners(bool, optional): If `align_corners` is true, it will projects
-1 and 1 to the centers of the corner pixels. Otherwise, it will
projects -1 and 1 to the image edges.
name(str|None, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
Tensor, The shape of output is [N, C, grid_H, grid_W] or [N, C, grid_D, grid_H, grid_W] in which `grid_D` is the depth of grid,
`grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.
Examples:
.. code-block:: python
>>> import paddle
>>> import paddle.nn.functional as F
>>> # x shape=[1, 1, 3, 3]
>>> x = paddle.to_tensor([[[[-0.6, 0.8, -0.5],
... [-0.5, 0.2, 1.2],
... [ 1.4, 0.3, -0.2]]]], dtype='float64')
>>> # grid.shape = [1, 3, 4, 2]
>>> grid = paddle.to_tensor([[[[ 0.2, 0.3],
... [-0.4, -0.3],
... [-0.9, 0.3],
... [-0.9, -0.6]],
... [[ 0.4, 0.1],
... [ 0.9, -0.8],
... [ 0.4, 0.5],
... [ 0.5, -0.2]],
... [[ 0.1, -0.8],
... [-0.3, -1. ],
... [ 0.7, 0.4],
... [ 0.2, 0.8]]]], dtype='float64')
>>> y_t = F.grid_sample(
... x,
... grid,
... mode='bilinear',
... padding_mode='border',
... align_corners=True
... )
>>> print(y_t)
Tensor(shape=[1, 1, 3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
[[[[ 0.34000000, 0.01600000, 0.08600000, -0.44800000],
[ 0.55000000, -0.07600000, 0.35000000, 0.59000000],
[ 0.59600000, 0.38000000, 0.52000000, 0.24000000]]]])
"""
_modes = ['bilinear', 'nearest']
_padding_modes = ['zeros', 'reflection', 'border']
if mode not in _modes:
raise ValueError(
f"The mode of grid sample function should be in {_modes}, but got: {mode}"
)
if padding_mode not in _padding_modes:
raise ValueError(
f"The padding mode of grid sample function should be in {_padding_modes}, but got: {padding_mode}"
)
if not isinstance(align_corners, bool):
raise ValueError(
f"The align corners should be bool, but got: {align_corners}"
)
cudnn_version = get_cudnn_version()
use_cudnn = False
if (
not is_compiled_with_rocm()
and (cudnn_version is not None)
and align_corners
and mode == 'bilinear'
and padding_mode == 'zeros'
):
use_cudnn = True
# CUDNN always computes gradients for all inputs
x.stop_gradient = False
grid.stop_gradient = False
if len(grid.shape) == 5:
use_cudnn = False
if in_dynamic_or_pir_mode():
return _C_ops.grid_sample(x, grid, mode, padding_mode, align_corners)
else:
helper = LayerHelper("grid_sample", **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sample')
check_variable_and_dtype(
grid, 'grid', ['float32', 'float64'], 'grid_sample'
)
ipts = {'X': x, 'Grid': grid}
attrs = {
'mode': mode,
'padding_mode': padding_mode,
'align_corners': align_corners,
'use_cudnn': use_cudnn,
}
out = helper.create_variable_for_type_inference(x.dtype)
helper.append_op(
type='grid_sampler',
inputs=ipts,
attrs=attrs,
outputs={'Output': out},
)
return out
def pixel_shuffle(
x: Tensor,
upscale_factor: int,
data_format: DataLayout2D = 'NCHW',
name: str | None = None,
) -> Tensor:
"""
This API implements pixel shuffle operation.
See more details in :ref:`PixelShuffle <api_paddle_nn_PixelShuffle>` .
Parameters:
x(Tensor): 4-D tensor, the data type should be float32 or float64.
upscale_factor(int): factor to increase spatial resolution.
data_format (str, optional): The data format of the input and output data. An optional string from: ``"NCHW"``, ``"NHWC"``. When it is ``"NCHW"``, the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: ``"NCHW"``.
name (str|None, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Out(tensor): Reshaped tensor according to the new dimension.
Examples:
.. code-block:: python
>>> import paddle
>>> import paddle.nn.functional as F
>>> x = paddle.randn(shape=[2,9,4,4])
>>> out_var = F.pixel_shuffle(x, 3)
>>> print(out_var.shape)
[2, 1, 12, 12]
"""
if not isinstance(upscale_factor, int):
raise TypeError("upscale factor must be int type")
if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'."
f"But receive Attr(data_format): {data_format} "
)
if in_dynamic_or_pir_mode():
return _C_ops.pixel_shuffle(x, upscale_factor, data_format)
else:
helper = LayerHelper("pixel_shuffle", **locals())
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64'], 'pixel_shuffle'
)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="pixel_shuffle",
inputs={"X": x},
outputs={"Out": out},
attrs={
"upscale_factor": upscale_factor,
"data_format": data_format,
},
)
return out
def pixel_unshuffle(
x: Tensor,
downscale_factor: int,
data_format: DataLayout2D = 'NCHW',
name: str | None = None,
) -> Tensor:
"""
This API implements pixel unshuffle operation.
See more details in :ref:`PixelUnShuffle <api_paddle_nn_PixelUnshuffle>` .
Parameters:
x (Tensor): 4-D tensor, the data type should be float32 or float64.
downscale_factor (int): Factor to decrease spatial resolution.
data_format (str, optional): The data format of the input and output data. An optional string of ``'NCHW'`` or ``'NHWC'``. When it is ``'NCHW'``, the data is stored in the order of [batch_size, input_channels, input_height, input_width]. Default: ``'NCHW'``.
name (str|None, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Out (Tensor): Reshaped tensor according to the new dimension.
Examples:
.. code-block:: python
>>> import paddle
>>> import paddle.nn.functional as F
>>> x = paddle.randn([2, 1, 12, 12])
>>> out = F.pixel_unshuffle(x, 3)
>>> print(out.shape)
[2, 9, 4, 4]
"""
if len(x.shape) != 4:
raise ValueError(
f"Input x should be 4D tensor, but received x with the shape of {x.shape}"
)
if not isinstance(downscale_factor, int):
raise TypeError("Downscale factor must be int type")
if downscale_factor <= 0:
raise ValueError("Downscale factor must be positive")
if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'."
f"But receive Attr(data_format): {data_format} "
)
if in_dynamic_or_pir_mode():
return _C_ops.pixel_unshuffle(x, downscale_factor, data_format)
helper = LayerHelper("pixel_unshuffle", **locals())
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'pixel_unshuffle'
)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="pixel_unshuffle",
inputs={"X": x},
outputs={"Out": out},
attrs={
"downscale_factor": downscale_factor,
"data_format": data_format,
},
)
return out
def channel_shuffle(
x: Tensor,
groups: int,
data_format: DataLayout2D = 'NCHW',
name: str | None = None,
) -> Tensor:
"""
This API implements channel shuffle operation.
See more details in :ref:`api_paddle_nn_ChannelShuffle`.
Parameters:
x (Tensor): 4-D tensor, the data type should be float32 or float64.
groups (int): Number of groups to divide channels in.
data_format (str, optional): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
name (str|None, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Out (Tensor): Rearranged tensor keeping the original tensor shape.
Examples:
.. code-block:: python
>>> import paddle
>>> import paddle.nn.functional as F
>>> x = paddle.arange(0, 0.6, 0.1, 'float32')
>>> x = paddle.reshape(x, [1, 6, 1, 1])
>>> print(x)
Tensor(shape=[1, 6, 1, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
[[[[0. ]],
[[0.10000000]],
[[0.20000000]],
[[0.30000001]],
[[0.40000001]],
[[0.50000000]]]])
>>> y = F.channel_shuffle(x, 3)
>>> print(y)
Tensor(shape=[1, 6, 1, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
[[[[0. ]],
[[0.20000000]],
[[0.40000001]],
[[0.10000000]],
[[0.30000001]],
[[0.50000000]]]])
"""
if len(x.shape) != 4:
raise ValueError(
f"Input x should be 4D tensor, but received x with the shape of {x.shape}"
)
if not isinstance(groups, int):
raise TypeError("groups must be int type")
if groups <= 0:
raise ValueError("groups must be positive")
if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'."
f"But receive Attr(data_format): {data_format} "
)
if in_dynamic_or_pir_mode():
return _C_ops.channel_shuffle(x, groups, data_format)
helper = LayerHelper("channel_shuffle", **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'channel_shuffle')
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="channel_shuffle",
inputs={"X": x},
outputs={"Out": out},
attrs={"groups": groups, "data_format": data_format},
)
return out