|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import random |
| 16 | +import unittest |
| 17 | + |
| 18 | +import numpy as np |
| 19 | +from op_test import convert_float_to_uint16, get_places |
| 20 | + |
| 21 | +import paddle |
| 22 | +from paddle.device import get_device |
| 23 | + |
| 24 | + |
| 25 | +def cumprod_wrapper(x, dim=-1, exclusive=False, reverse=False): |
| 26 | + return paddle._C_ops.cumprod(x, dim, exclusive, reverse) |
| 27 | + |
| 28 | + |
| 29 | +# define cumprod grad function. |
| 30 | +def cumprod_grad(x, y, dy, dx, shape, dim, exclusive=False, reverse=False): |
| 31 | + if dim < 0: |
| 32 | + dim += len(shape) |
| 33 | + mid_dim = shape[dim] |
| 34 | + outer_dim = 1 |
| 35 | + inner_dim = 1 |
| 36 | + for i in range(0, dim): |
| 37 | + outer_dim *= shape[i] |
| 38 | + for i in range(dim + 1, len(shape)): |
| 39 | + inner_dim *= shape[i] |
| 40 | + if not reverse: |
| 41 | + for i in range(outer_dim): |
| 42 | + for k in range(inner_dim): |
| 43 | + for j in range(mid_dim): |
| 44 | + index = i * mid_dim * inner_dim + j * inner_dim + k |
| 45 | + for n in range(mid_dim): |
| 46 | + pos = i * mid_dim * inner_dim + n * inner_dim + k |
| 47 | + elem = 0 |
| 48 | + if exclusive: |
| 49 | + if pos > index: |
| 50 | + elem = dy[pos] * y[index] |
| 51 | + for m in range( |
| 52 | + index + inner_dim, pos, inner_dim |
| 53 | + ): |
| 54 | + elem *= x[m] |
| 55 | + else: |
| 56 | + elem = 0 |
| 57 | + else: |
| 58 | + if j == 0: |
| 59 | + elem = dy[pos] |
| 60 | + else: |
| 61 | + elem = dy[pos] * y[index - inner_dim] |
| 62 | + if pos > index: |
| 63 | + for m in range( |
| 64 | + index + inner_dim, |
| 65 | + pos + inner_dim, |
| 66 | + inner_dim, |
| 67 | + ): |
| 68 | + elem *= x[m] |
| 69 | + elif pos < index: |
| 70 | + elem = 0 |
| 71 | + dx[index] += elem |
| 72 | + else: |
| 73 | + for i in range(outer_dim): |
| 74 | + for k in range(inner_dim): |
| 75 | + for j in range(mid_dim - 1, -1, -1): |
| 76 | + index = i * mid_dim * inner_dim + j * inner_dim + k |
| 77 | + for n in range(mid_dim - 1, -1, -1): |
| 78 | + pos = i * mid_dim * inner_dim + n * inner_dim + k |
| 79 | + elem = 0 |
| 80 | + if exclusive: |
| 81 | + if pos < index: |
| 82 | + elem = dy[pos] * y[index] |
| 83 | + for m in range( |
| 84 | + index - inner_dim, pos, -inner_dim |
| 85 | + ): |
| 86 | + elem *= x[m] |
| 87 | + else: |
| 88 | + if j == mid_dim - 1: |
| 89 | + elem = dy[pos] |
| 90 | + else: |
| 91 | + elem = dy[pos] * y[index + inner_dim] |
| 92 | + if pos < index: |
| 93 | + for m in range( |
| 94 | + index - inner_dim, |
| 95 | + pos - inner_dim, |
| 96 | + -inner_dim, |
| 97 | + ): |
| 98 | + elem *= x[m] |
| 99 | + elif pos > index: |
| 100 | + elem = 0 |
| 101 | + dx[index] += elem |
| 102 | + |
| 103 | + |
| 104 | +def skip_if_not_cpu_or_gpu(func): |
| 105 | + def wrapper(self): |
| 106 | + device = get_device() |
| 107 | + if not (device == 'cpu' or device.startswith('gpu:')): |
| 108 | + self.skipTest(f"Test skipped on device: {device}") |
| 109 | + return func(self) |
| 110 | + |
| 111 | + return wrapper |
| 112 | + |
| 113 | + |
| 114 | +class TestCumprod(unittest.TestCase): |
| 115 | + def init_params(self): |
| 116 | + self.shape = (2, 3, 4, 5) |
| 117 | + self.zero_nums = [0, 10, 20, 30, int(np.prod(self.shape))] |
| 118 | + |
| 119 | + def init_dtype(self): |
| 120 | + self.dtype = np.float64 |
| 121 | + self.val_dtype = np.float64 |
| 122 | + |
| 123 | + def setUp(self): |
| 124 | + paddle.disable_static() |
| 125 | + self.init_params() |
| 126 | + self.init_dtype() |
| 127 | + |
| 128 | + def tearDown(self): |
| 129 | + paddle.enable_static() |
| 130 | + |
| 131 | + def prepare_test_data(self, dim, zero_num): |
| 132 | + self.x = ( |
| 133 | + np.random.uniform(0.0, 0.5, self.shape).astype(self.val_dtype) + 0.5 |
| 134 | + ) |
| 135 | + if zero_num > 0: |
| 136 | + zero_num = min(zero_num, self.x.size) |
| 137 | + shape = self.x.shape |
| 138 | + self.x = self.x.flatten() |
| 139 | + indices = random.sample(range(self.x.size), zero_num) |
| 140 | + for i in indices: |
| 141 | + self.x[i] = 0 |
| 142 | + self.x = np.reshape(self.x, self.shape) |
| 143 | + self.expected_out = np.cumprod(self.x, axis=dim) |
| 144 | + |
| 145 | + def compute_expected_grad(self, dim): |
| 146 | + reshape_x = self.x.reshape(self.x.size) |
| 147 | + grad_out = np.ones(self.x.size, self.val_dtype) |
| 148 | + grad_x = np.zeros(self.x.size, self.val_dtype) |
| 149 | + out_data = self.expected_out.reshape(self.x.size) |
| 150 | + |
| 151 | + if self.dtype == np.complex128 or self.dtype == np.complex64: |
| 152 | + reshape_x = np.conj(reshape_x) |
| 153 | + out_data = np.conj(out_data) |
| 154 | + |
| 155 | + cumprod_grad(reshape_x, out_data, grad_out, grad_x, self.shape, dim) |
| 156 | + |
| 157 | + return grad_x.reshape(self.shape) |
| 158 | + |
| 159 | + def test_forward_computation(self): |
| 160 | + for dim in range(-len(self.shape), len(self.shape)): |
| 161 | + for zero_num in self.zero_nums: |
| 162 | + with self.subTest(dim=dim, zero_num=zero_num): |
| 163 | + self._test_forward_for_case(dim, zero_num) |
| 164 | + |
| 165 | + def _test_forward_for_case(self, dim, zero_num): |
| 166 | + self.prepare_test_data(dim, zero_num) |
| 167 | + |
| 168 | + x_tensor = paddle.to_tensor(self.x, dtype=self.val_dtype) |
| 169 | + out = paddle.cumprod(x_tensor, dim=dim) |
| 170 | + |
| 171 | + np.testing.assert_allclose( |
| 172 | + out.numpy(), self.expected_out, rtol=1e-05, atol=1e-06 |
| 173 | + ) |
| 174 | + |
| 175 | + def test_gradient_computation(self): |
| 176 | + for dim in range(-len(self.shape), len(self.shape)): |
| 177 | + for zero_num in [0, 10]: |
| 178 | + with self.subTest(dim=dim, zero_num=zero_num): |
| 179 | + self._test_gradient_for_case(dim, zero_num) |
| 180 | + |
| 181 | + def _test_gradient_for_case(self, dim, zero_num): |
| 182 | + self.prepare_test_data(dim, zero_num) |
| 183 | + |
| 184 | + x_tensor = paddle.to_tensor( |
| 185 | + self.x, dtype=self.val_dtype, stop_gradient=False |
| 186 | + ) |
| 187 | + out = paddle.cumprod(x_tensor, dim=dim) |
| 188 | + |
| 189 | + np.testing.assert_allclose( |
| 190 | + out.numpy(), self.expected_out, rtol=1e-05, atol=1e-06 |
| 191 | + ) |
| 192 | + |
| 193 | + loss = paddle.sum(out) |
| 194 | + loss.backward() |
| 195 | + |
| 196 | + expected_grad = self.compute_expected_grad(dim) |
| 197 | + |
| 198 | + if self.dtype == np.float64: |
| 199 | + np.testing.assert_allclose( |
| 200 | + x_tensor.grad.numpy(), expected_grad, rtol=1e-05, atol=1e-06 |
| 201 | + ) |
| 202 | + else: |
| 203 | + if self.dtype == np.uint16: |
| 204 | + expected_grad_converted = convert_float_to_uint16(expected_grad) |
| 205 | + np.testing.assert_allclose( |
| 206 | + x_tensor.grad.numpy(), |
| 207 | + expected_grad_converted, |
| 208 | + rtol=1e-03, |
| 209 | + atol=1e-04, |
| 210 | + ) |
| 211 | + else: |
| 212 | + np.testing.assert_allclose( |
| 213 | + x_tensor.grad.numpy(), expected_grad, rtol=1e-04, atol=1e-05 |
| 214 | + ) |
| 215 | + |
| 216 | + |
| 217 | +class TestCumprodDtypeFloat32(TestCumprod): |
| 218 | + def init_dtype(self): |
| 219 | + self.dtype = np.float32 |
| 220 | + self.val_dtype = np.float32 |
| 221 | + |
| 222 | + @skip_if_not_cpu_or_gpu |
| 223 | + def test_dtype_float32(self): |
| 224 | + self.prepare_test_data(dim=1, zero_num=0) |
| 225 | + |
| 226 | + x = paddle.to_tensor(self.x, dtype='float32') |
| 227 | + x.stop_gradient = False |
| 228 | + out = paddle.cumprod(x, dim=1, dtype='float32') |
| 229 | + self.assertEqual(out.dtype, paddle.float32) |
| 230 | + |
| 231 | + out_ref = np.cumprod(self.x.astype(np.float32), axis=1).astype( |
| 232 | + np.float32 |
| 233 | + ) |
| 234 | + np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05) |
| 235 | + |
| 236 | + loss = paddle.sum(out) |
| 237 | + loss.backward() |
| 238 | + self.assertEqual(x.grad.dtype, paddle.float32) |
| 239 | + |
| 240 | + expected_grad = self.compute_expected_grad(1) |
| 241 | + np.testing.assert_allclose( |
| 242 | + x.grad.numpy(), expected_grad, rtol=1e-04, atol=1e-05 |
| 243 | + ) |
| 244 | + |
| 245 | + |
| 246 | +class TestCumprodDtypeFloat64(TestCumprod): |
| 247 | + def init_dtype(self): |
| 248 | + self.dtype = np.float32 |
| 249 | + self.val_dtype = np.float32 |
| 250 | + |
| 251 | + @skip_if_not_cpu_or_gpu |
| 252 | + def test_dtype_float64(self): |
| 253 | + self.prepare_test_data(dim=1, zero_num=0) |
| 254 | + |
| 255 | + x = paddle.to_tensor(self.x, dtype='float32') |
| 256 | + x.stop_gradient = False |
| 257 | + out = paddle.cumprod(x, dim=1, dtype='float64') |
| 258 | + self.assertEqual(out.dtype, paddle.float64) |
| 259 | + |
| 260 | + out_ref = np.cumprod(self.x.astype(np.float32), axis=1).astype( |
| 261 | + np.float64 |
| 262 | + ) |
| 263 | + np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05) |
| 264 | + |
| 265 | + loss = paddle.sum(out) |
| 266 | + loss.backward() |
| 267 | + self.assertEqual(x.grad.dtype, paddle.float32) |
| 268 | + |
| 269 | + self.assertIsNotNone(x.grad) |
| 270 | + self.assertEqual(x.grad.shape, x.shape) |
| 271 | + |
| 272 | + |
| 273 | +class TestCumprodDtypeStatic(unittest.TestCase): |
| 274 | + def setUp(self): |
| 275 | + self.shape = [2, 3, 4] |
| 276 | + self.x = (np.random.rand(*self.shape) + 0.5).astype(np.float32) |
| 277 | + self.places = get_places() |
| 278 | + |
| 279 | + @skip_if_not_cpu_or_gpu |
| 280 | + def test_static_dtype_float32(self): |
| 281 | + paddle.enable_static() |
| 282 | + for place in self.places: |
| 283 | + with paddle.static.program_guard(paddle.static.Program()): |
| 284 | + x = paddle.static.data('X', self.shape, dtype='float32') |
| 285 | + out = paddle.cumprod(x, dim=1, dtype='float32') |
| 286 | + exe = paddle.static.Executor(place) |
| 287 | + (out_res,) = exe.run(feed={'X': self.x}, fetch_list=[out]) |
| 288 | + |
| 289 | + out_ref = np.cumprod(self.x, axis=1).astype(np.float32) |
| 290 | + np.testing.assert_allclose(out_ref, out_res, rtol=1e-05) |
| 291 | + |
| 292 | + |
| 293 | +class TestCumprodBoundaryConditions(unittest.TestCase): |
| 294 | + def setUp(self): |
| 295 | + paddle.disable_static() |
| 296 | + |
| 297 | + def tearDown(self): |
| 298 | + paddle.enable_static() |
| 299 | + |
| 300 | + @skip_if_not_cpu_or_gpu |
| 301 | + def test_single_element_tensor(self): |
| 302 | + x = paddle.to_tensor([5.0], dtype='float32', stop_gradient=False) |
| 303 | + out = paddle.cumprod(x, dim=0) |
| 304 | + |
| 305 | + self.assertEqual(out.shape, [1]) |
| 306 | + np.testing.assert_allclose(out.numpy(), [5.0], rtol=1e-05) |
| 307 | + |
| 308 | + out.backward() |
| 309 | + np.testing.assert_allclose(x.grad.numpy(), [1.0], rtol=1e-05) |
| 310 | + |
| 311 | + @skip_if_not_cpu_or_gpu |
| 312 | + def test_zero_values_gradient(self): |
| 313 | + x_data = np.array([[1.0, 0.0, 3.0], [2.0, 4.0, 0.0]], dtype=np.float32) |
| 314 | + x = paddle.to_tensor(x_data, stop_gradient=False) |
| 315 | + |
| 316 | + out = paddle.cumprod(x, dim=1) |
| 317 | + loss = paddle.sum(out) |
| 318 | + loss.backward() |
| 319 | + |
| 320 | + self.assertIsNotNone(x.grad) |
| 321 | + self.assertEqual(x.grad.shape, x.shape) |
| 322 | + |
| 323 | + @skip_if_not_cpu_or_gpu |
| 324 | + def test_negative_dim(self): |
| 325 | + x_data = np.random.rand(2, 3, 4).astype(np.float32) + 0.5 |
| 326 | + x = paddle.to_tensor(x_data, stop_gradient=False) |
| 327 | + |
| 328 | + out1 = paddle.cumprod(x, dim=-1) |
| 329 | + out2 = paddle.cumprod(x, dim=2) |
| 330 | + |
| 331 | + np.testing.assert_allclose(out1.numpy(), out2.numpy(), rtol=1e-05) |
| 332 | + |
| 333 | + loss1 = paddle.sum(out1) |
| 334 | + loss1.backward() |
| 335 | + |
| 336 | + self.assertIsNotNone(x.grad) |
| 337 | + |
| 338 | + |
| 339 | +if __name__ == "__main__": |
| 340 | + unittest.main() |
0 commit comments