We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
欢迎您使用PaddleClas并反馈相关问题,非常感谢您对PaddleClas的贡献! 提出issue时,辛苦您提供以下信息,方便我们快速定位问题并及时有效地解决您的问题:
然后在conda环境中,用PaddleClas release/2.5代码,执行了 python setup.py install 2. 涉及的其他产品使用的版本号: 3. 训练环境信息: a. 具体操作系统,如Windows 的conda环境 b. Python版本号,如F:\PaddleClas\deploy\python\predict_rec.py c. CUDA/cuDNN版本:无 4. 完整的代码(相比于repo中代码,有改动的地方)、详细的错误信息及相关log
按照【特征提取】
使用模型:general_PPLCNetV2_base_pretrained_v1.0_infer
F:\PaddleClas\deploy>python python/predict_rec.py -c configs/inference_rec.yaml inference_rec.yaml的内容,如附件inference_rec.txt
抽取2图特征向量,并求2个特征向量的距离。 看起来很相似的图,但距离值很大,distance: [0.27994147]
这是自己写的求特征向量距离的函数:
def euclidean_distance(output1, output2): # 计算两个batch_output之间的差值 diff = output1 - output2 # 计算每个样本的平方差值 squared_diff = np.square(diff) # 沿axis=1对每个样本的平方差值求和 sum_squared_diff = np.sum(squared_diff, axis=1) # 求和后再开平方得到欧几里德距离 distances = np.sqrt(sum_squared_diff)
return distances
The text was updated successfully, but these errors were encountered:
建议去看下余弦距离哦
Sorry, something went wrong.
Sunting78
No branches or pull requests
欢迎您使用PaddleClas并反馈相关问题,非常感谢您对PaddleClas的贡献!
提出issue时,辛苦您提供以下信息,方便我们快速定位问题并及时有效地解决您的问题:
conda中安装了
paddlepaddle 2.4.2 py310_cpu_windows https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle
然后在conda环境中,用PaddleClas release/2.5代码,执行了 python setup.py install
2. 涉及的其他产品使用的版本号:
3. 训练环境信息:
a. 具体操作系统,如Windows 的conda环境
b. Python版本号,如F:\PaddleClas\deploy\python\predict_rec.py
c. CUDA/cuDNN版本:无
4. 完整的代码(相比于repo中代码,有改动的地方)、详细的错误信息及相关log
按照【特征提取】
使用模型:general_PPLCNetV2_base_pretrained_v1.0_infer
F:\PaddleClas\deploy>python python/predict_rec.py -c configs/inference_rec.yaml
inference_rec.yaml的内容,如附件inference_rec.txt
抽取2图特征向量,并求2个特征向量的距离。
看起来很相似的图,但距离值很大,distance: [0.27994147]
这是自己写的求特征向量距离的函数:
def euclidean_distance(output1, output2):
# 计算两个batch_output之间的差值
diff = output1 - output2
# 计算每个样本的平方差值
squared_diff = np.square(diff)
# 沿axis=1对每个样本的平方差值求和
sum_squared_diff = np.sum(squared_diff, axis=1)
# 求和后再开平方得到欧几里德距离
distances = np.sqrt(sum_squared_diff)
The text was updated successfully, but these errors were encountered: