We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
(paddlegan) PS F:\PaddleGAN> python -u tools/main.py --config-file configs/starganv2_celeba_hq.yaml [11/21 11:29:27] ppgan INFO: Configs: dataset: test: batch_size: 16 dataroot: data/stargan-v2/celeba_hq/val/ is_train: false name: StarGANv2Dataset num_workers: 8 preprocess: - key: src name: LoadImageFromFile - key: ref name: LoadImageFromFile - input_keys: - src - ref name: Transforms pipeline: - interpolation: bicubic keys: - image - image name: Resize size: - 256 - 256 - keys: - image - image name: Transpose - keys: - image - image mean: - 127.5 - 127.5 - 127.5 name: Normalize std: - 127.5 - 127.5 - 127.5 test_count: 16 train: batch_size: 4 dataroot: data/stargan-v2/celeba_hq/train/ is_train: true name: StarGANv2Dataset num_workers: 8 preprocess: - key: src name: LoadImageFromFile - key: ref name: LoadImageFromFile - key: ref2 name: LoadImageFromFile - input_keys: - src - ref - ref2 name: Transforms pipeline: - interpolation: bilinear keys: - image - image - image name: RandomResizedCropProb prob: 0.9 ratio: - 0.9 - 1.1 scale: - 0.8 - 1.0 size: - 256 - 256 - interpolation: bilinear keys: - image - image - image name: Resize size: - 256 - 256 - keys: - image - image - image name: RandomHorizontalFlip prob: 0.5 - keys: - image - image - image name: Transpose - keys: - image - image - image mean: - 127.5 - 127.5 - 127.5 name: Normalize std: - 127.5 - 127.5 - 127.5 epochs: 200 is_train: true log_config: interval: 100 visiual_interval: 3000 lr_scheduler: decay_epochs: 100 iters_per_epoch: 365 learning_rate: 0.0001 name: LinearDecay start_epoch: 100 model: discriminator: img_size: 256 name: StarGANv2Discriminator num_domains: 2 fan: fname_pretrained: null name: FAN generator: img_size: 256 name: StarGANv2Generator style_dim: 64 w_hpf: 1 lambda_cyc: 1 lambda_ds: 1 lambda_sty: 1 latent_dim: 16 mapping: latent_dim: 16 name: StarGANv2Mapping num_domains: 2 style_dim: 64 name: StarGANv2Model style: img_size: 256 name: StarGANv2Style num_domains: 2 style_dim: 64 optimizer: discriminator: beta1: 0.0 beta2: 0.99 name: Adam net_names: - discriminator weight_decay: 0.0001 generator: beta1: 0.0 beta2: 0.99 name: Adam net_names: - generator weight_decay: 0.0001 mapping_network: beta1: 0.0 beta2: 0.99 name: Adam net_names: - mapping_network weight_decay: 0.0001 main(args, cfg) File "F:\PaddleGAN\tools\main.py", line 46, in main trainer.train() File "F:\PaddleGAN\ppgan\engine\trainer.py", line 234, in train self.model.train_iter(self.optimizers) # norm train File "F:\PaddleGAN\ppgan\models\starganv2_model.py", line 279, in train_iter d_loss, d_losses_latent = compute_d_loss(self.nets, File "F:\PaddleGAN\ppgan\models\starganv2_model.py", line 64, in compute_d_loss s_trg = nets['mapping_network'](z_trg, y_trg) File "D:\ProgramData\miniconda3\envs\paddlegan\lib\site-packages\paddle\nn\layer\layers.py", line 1426, in call return self.forward(*inputs, **kwargs) File "F:\PaddleGAN\ppgan\models\generators\generator_starganv2.py", line 245, in forward out[idx[i].numpy().astype(np.int_).tolist()[0], TypeError: 'int' object is not subscriptable 感觉是numpy的版本问题,请问应该选择什么版本
The text was updated successfully, but these errors were encountered:
jerrywgz
No branches or pull requests
(paddlegan) PS F:\PaddleGAN> python -u tools/main.py --config-file configs/starganv2_celeba_hq.yaml
[11/21 11:29:27] ppgan INFO: Configs:
dataset:
test:
batch_size: 16
dataroot: data/stargan-v2/celeba_hq/val/
is_train: false
name: StarGANv2Dataset
num_workers: 8
preprocess:
- key: src
name: LoadImageFromFile
- key: ref
name: LoadImageFromFile
- input_keys:
- src
- ref
name: Transforms
pipeline:
- interpolation: bicubic
keys:
- image
- image
name: Resize
size:
- 256
- 256
- keys:
- image
- image
name: Transpose
- keys:
- image
- image
mean:
- 127.5
- 127.5
- 127.5
name: Normalize
std:
- 127.5
- 127.5
- 127.5
test_count: 16
train:
batch_size: 4
dataroot: data/stargan-v2/celeba_hq/train/
is_train: true
name: StarGANv2Dataset
num_workers: 8
preprocess:
- key: src
name: LoadImageFromFile
- key: ref
name: LoadImageFromFile
- key: ref2
name: LoadImageFromFile
- input_keys:
- src
- ref
- ref2
name: Transforms
pipeline:
- interpolation: bilinear
keys:
- image
- image
- image
name: RandomResizedCropProb
prob: 0.9
ratio:
- 0.9
- 1.1
scale:
- 0.8
- 1.0
size:
- 256
- 256
- interpolation: bilinear
keys:
- image
- image
- image
name: Resize
size:
- 256
- 256
- keys:
- image
- image
- image
name: RandomHorizontalFlip
prob: 0.5
- keys:
- image
- image
- image
name: Transpose
- keys:
- image
- image
- image
mean:
- 127.5
- 127.5
- 127.5
name: Normalize
std:
- 127.5
- 127.5
- 127.5
epochs: 200
is_train: true
log_config:
interval: 100
visiual_interval: 3000
lr_scheduler:
decay_epochs: 100
iters_per_epoch: 365
learning_rate: 0.0001
name: LinearDecay
start_epoch: 100
model:
discriminator:
img_size: 256
name: StarGANv2Discriminator
num_domains: 2
fan:
fname_pretrained: null
name: FAN
generator:
img_size: 256
name: StarGANv2Generator
style_dim: 64
w_hpf: 1
lambda_cyc: 1
lambda_ds: 1
lambda_sty: 1
latent_dim: 16
mapping:
latent_dim: 16
name: StarGANv2Mapping
num_domains: 2
style_dim: 64
name: StarGANv2Model
style:
img_size: 256
name: StarGANv2Style
num_domains: 2
style_dim: 64
optimizer:
discriminator:
beta1: 0.0
beta2: 0.99
name: Adam
net_names:
- discriminator
weight_decay: 0.0001
generator:
beta1: 0.0
beta2: 0.99
name: Adam
net_names:
- generator
weight_decay: 0.0001
mapping_network:
beta1: 0.0
beta2: 0.99
name: Adam
net_names:
- mapping_network
weight_decay: 0.0001
main(args, cfg)
File "F:\PaddleGAN\tools\main.py", line 46, in main
trainer.train()
File "F:\PaddleGAN\ppgan\engine\trainer.py", line 234, in train
self.model.train_iter(self.optimizers) # norm train
File "F:\PaddleGAN\ppgan\models\starganv2_model.py", line 279, in train_iter
d_loss, d_losses_latent = compute_d_loss(self.nets,
File "F:\PaddleGAN\ppgan\models\starganv2_model.py", line 64, in compute_d_loss
s_trg = nets['mapping_network'](z_trg, y_trg)
File "D:\ProgramData\miniconda3\envs\paddlegan\lib\site-packages\paddle\nn\layer\layers.py", line 1426, in call
return self.forward(*inputs, **kwargs)
File "F:\PaddleGAN\ppgan\models\generators\generator_starganv2.py", line 245, in forward
out[idx[i].numpy().astype(np.int_).tolist()[0],
TypeError: 'int' object is not subscriptable
感觉是numpy的版本问题,请问应该选择什么版本
The text was updated successfully, but these errors were encountered: