-
Notifications
You must be signed in to change notification settings - Fork 645
/
Copy pathcriteo_reader.py
60 lines (55 loc) · 2.39 KB
/
criteo_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle
import os
from paddle.io import IterableDataset
class RecDataset(IterableDataset):
def __init__(self, file_list, config):
super(RecDataset, self).__init__()
self.file_list = file_list
if config:
use_fleet = config.get("runner.use_fleet", False)
self.inference = config.get("runner.inference", False)
else:
use_fleet = False
if use_fleet:
worker_id = paddle.distributed.get_rank()
worker_num = paddle.distributed.get_world_size()
file_num = len(file_list)
if file_num < worker_num:
raise ValueError(
"The number of data files is less than the number of workers"
)
blocksize = int(file_num / worker_num)
self.file_list = file_list[worker_id * blocksize:(worker_id + 1) *
blocksize]
remainder = file_num - (blocksize * worker_num)
if worker_id < remainder:
self.file_list.append(file_list[-(worker_id + 1)])
self.file_name = ['train_i.npy', 'train_x2.npy', 'train_y.npy']
def __iter__(self):
for file in self.file_list:
with open(file, 'r') as rf:
for l in rf:
line = l.strip().split(' ')
output_list = []
output_list.append(np.array([line[0]]).astype('int64'))
output_list.append(np.array(line[1:40]).astype('int64'))
output_list.append(np.array(line[40:]).astype('float32'))
if self.inference:
yield output_list[1:]
else:
yield output_list