similar to 62 63, use 2d DP. d[m][n] denotes the minimal sum reaching [m][n] for first row and first col:
- d[0][0] = grid[0][0], d[0][j] = d[0][j-1] + grid[0][j], d[i][0] = d[i-1][0] + grid[i][0]
- d[i][j] = min (d[i-1][j], d[i][j-1]) + grid[i][j]
class Solution(object):
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
if not grid or not grid[0]: return 0
m, n = len(grid), len(grid[0])
dp = [[0] * n for _ in range(m)]
dp[0][0] = grid[0][0]
for j in range(1, n):
dp[0][j] = dp[0][j - 1] + grid[0][j]
for i in range(1, m):
dp[i][0] = dp[i - 1][0] + grid[i][0]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
return dp[m-1][n-1]
Space optimization
class Solution(object):
def minPathSum(self, grid):
if not grid or not grid[0]: return 0
row, col = len(grid), len(grid[0])
dp = [0] * col
# filling first line
for j in range(col):
if j == 0:
dp[j] = grid[0][j]
else:
dp[j] = dp[j - 1] + grid[0][j]
for i in range(1, row):
dp[0] += grid[i][0]
for j in range(1, col):
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
return dp[-1]