-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathreedsolomon.h
546 lines (468 loc) · 16.9 KB
/
reedsolomon.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
// This file is part of par2cmdline (a PAR 2.0 compatible file verification and
// repair tool). See http://parchive.sourceforge.net for details of PAR 2.0.
//
// Copyright (c) 2003 Peter Brian Clements
// Copyright (c) 2019 Michael D. Nahas
//
// par2cmdline is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// par2cmdline is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef __REEDSOLOMON_H__
#define __REEDSOLOMON_H__
// The ReedSolomon object is used to calculate and store the matrix
// used during recovery block creation or data block reconstruction.
//
// During initialisation, one RSOutputRow object is created for each
// recovery block that either needs to be created or is available for
// use.
class RSOutputRow
{
public:
RSOutputRow(void) {};
RSOutputRow(bool _present, u16 _exponent) : present(_present), exponent(_exponent) {}
public:
bool present;
u16 exponent;
};
template<class g>
class ReedSolomon
{
public:
typedef g G;
ReedSolomon(void);
~ReedSolomon(void);
// Set which input blocks are present or missing
// Some input blocks are present
bool SetInput(const vector<bool> &present, std::ostream &sout, std::ostream &serr);
// All input blocks are present
bool SetInput(u32 count, std::ostream &sout, std::ostream &serr);
// Set which output block are available or need to be computed
bool SetOutput(bool present, u16 exponent);
bool SetOutput(bool present, u16 lowexponent, u16 highexponent);
// Compute the RS Matrix
bool Compute(NoiseLevel noiselevel, std::ostream &sout, std::ostream &serr);
// Process a block of data
bool Process(size_t size, // The size of the block of data
u32 inputindex, // The column in the RS matrix
const void *inputbuffer, // Buffer containing input data
u32 outputindex, // The row in the RS matrix
void *outputbuffer); // Buffer containing output data
private:
bool InternalProcess(const g &factor, size_t size, const void *inputbuffer, void *outputbuffer); // Optimization
protected:
// Perform Gaussian Elimination
bool GaussElim(NoiseLevel noiselevel,
std::ostream &sout,
std::ostream &serr,
unsigned int rows,
unsigned int leftcols,
G *leftmatrix,
G *rightmatrix,
unsigned int datamissing);
protected:
u32 inputcount; // Total number of input blocks
u32 datapresent; // Number of input blocks that are present
u32 datamissing; // Number of input blocks that are missing
u32 *datapresentindex; // The index numbers of the data blocks that are present
u32 *datamissingindex; // The index numbers of the data blocks that are missing
typename G::ValueType *database;// The "base" value to use for each input block
u32 outputcount; // Total number of output blocks
u32 parpresent; // Number of output blocks that are present
u32 parmissing; // Number of output blocks that are missing
u32 *parpresentindex; // The index numbers of the output blocks that are present
u32 *parmissingindex; // The index numbers of the output blocks that are missing
vector<RSOutputRow> outputrows; // Details of the output blocks
G *leftmatrix; // The main matrix
// When the matrices are initialised: values of the form base ^ exponent are
// stored (where the base values are obtained from database[] and the exponent
// values are obtained from outputrows[]).
#ifdef LONGMULTIPLY
GaloisLongMultiplyTable<g> *glmt; // A multiplication table used by Process()
#endif
private:
// private copy constructor to prevent any misuse.
ReedSolomon(const ReedSolomon &);
ReedSolomon& operator=(const ReedSolomon &);
};
template<class g>
inline ReedSolomon<g>::ReedSolomon(void)
: outputrows()
{
inputcount = 0;
datapresent = 0;
datamissing = 0;
datapresentindex = 0;
datamissingindex = 0;
database = 0;
outputcount = 0;
parpresent = 0;
parmissing = 0;
parpresentindex = 0;
parmissingindex = 0;
leftmatrix = 0;
#ifdef LONGMULTIPLY
glmt = new GaloisLongMultiplyTable<g>;
#endif
}
template<class g>
inline ReedSolomon<g>::~ReedSolomon(void)
{
delete [] datapresentindex;
delete [] datamissingindex;
delete [] database;
delete [] parpresentindex;
delete [] parmissingindex;
delete [] leftmatrix;
#ifdef LONGMULTIPLY
delete glmt;
#endif
}
template<class g>
inline bool ReedSolomon<g>::Process(size_t size, u32 inputindex, const void *inputbuffer, u32 outputindex, void *outputbuffer)
{
// Optimization: it occurs frequently the function exits early on, so inline the start.
// This resulted in a speed gain of approx. 8% in repairing.
// Look up the appropriate element in the RS matrix
g factor = leftmatrix[outputindex * (datapresent + datamissing) + inputindex];
// Do nothing if the factor happens to be 0
if (factor == 0)
return eSuccess;
return this->InternalProcess (factor, size, inputbuffer, outputbuffer);
}
u32 gcd(u32 a, u32 b);
// Record whether the recovery block with the specified
// exponent values is present or missing.
template<class g>
inline bool ReedSolomon<g>::SetOutput(bool present, u16 exponent)
{
// Store the exponent and whether or not the recovery block is present or missing
outputrows.push_back(RSOutputRow(present, exponent));
outputcount++;
// Update the counts.
if (present)
{
parpresent++;
}
else
{
parmissing++;
}
return true;
}
// Record whether the recovery blocks with the specified
// range of exponent values are present or missing.
template<class g>
inline bool ReedSolomon<g>::SetOutput(bool present, u16 lowexponent, u16 highexponent)
{
for (unsigned int exponent=lowexponent; exponent<=highexponent; exponent++)
{
if (!SetOutput(present, exponent))
return false;
}
return true;
}
// Construct the Vandermonde matrix and solve it if necessary
template<class g>
inline bool ReedSolomon<g>::Compute(NoiseLevel noiselevel, std::ostream &sout, std::ostream &serr)
{
u32 outcount = datamissing + parmissing;
u32 incount = datapresent + datamissing;
if (datamissing > parpresent)
{
serr << "Not enough recovery blocks." << endl;
return false;
}
else if (outcount == 0)
{
serr << "No output blocks." << endl;
return false;
}
if (noiselevel > nlQuiet)
sout << "Computing Reed Solomon matrix." << endl;
/* Layout of RS Matrix:
NOTE: The second set of columns represents the parity vectors present,
but this only uses datamissing of them. Otherwise, it is over constrained.
datamissing
datapresent <=parpresent datamissing parmissing
/ | \ / | \
| (ppi[row])| | | (ppi[row])| |
datamissing | ^ | I | | ^ | 0 |
|(dpi[col]) | | |(dmi[col]) | |
+---------------------+-------------+ +---------------------+-----------+
| (pmi[row])| | | (pmi[row])| |
parmissing | ^ | 0 | | ^ | I |
|(dpi[col]) | | |(dmi[col]) | |
\ | / \ | /
*/
// Allocate the left hand matrix
leftmatrix = new G[outcount * incount];
memset(leftmatrix, 0, outcount * incount * sizeof(G));
// Allocate the right hand matrix only if we are recovering
G *rightmatrix = 0;
if (datamissing > 0)
{
rightmatrix = new G[outcount * outcount];
memset(rightmatrix, 0, outcount *outcount * sizeof(G));
}
// Fill in the two matrices:
vector<RSOutputRow>::const_iterator outputrow = outputrows.begin();
// One row for each present recovery block that will be used for a missing data block
for (unsigned int row=0; row<datamissing; row++)
{
// Define MPDL to skip reporting and speed things up
#ifndef MPDL
if (noiselevel > nlQuiet)
{
int progress = row * 1000 / (datamissing+parmissing);
sout << "Constructing: " << progress/10 << '.' << progress%10 << "%\r" << flush;
}
#endif
// Get the exponent of the next present recovery block
while (!outputrow->present)
{
outputrow++;
}
u16 exponent = outputrow->exponent;
// One column for each present data block
for (unsigned int col=0; col<datapresent; col++)
{
leftmatrix[row * incount + col] = G(database[datapresentindex[col]]).pow(exponent);
}
// One column for each each present recovery block that will be used for a missing data block
for (unsigned int col=0; col<datamissing; col++)
{
leftmatrix[row * incount + col + datapresent] = (row == col) ? 1 : 0;
}
if (datamissing > 0)
{
// One column for each missing data block
for (unsigned int col=0; col<datamissing; col++)
{
rightmatrix[row * outcount + col] = G(database[datamissingindex[col]]).pow(exponent);
}
// One column for each missing recovery block
for (unsigned int col=0; col<parmissing; col++)
{
rightmatrix[row * outcount + col + datamissing] = 0;
}
}
outputrow++;
}
// One row for each recovery block being computed
outputrow = outputrows.begin();
for (unsigned int row=0; row<parmissing; row++)
{
// Define MPDL to skip reporting and speed things up
#ifndef MPDL
if (noiselevel > nlQuiet)
{
int progress = (row+datamissing) * 1000 / (datamissing+parmissing);
sout << "Constructing: " << progress/10 << '.' << progress%10 << "%\r" << flush;
}
#endif
// Get the exponent of the next missing recovery block
while (outputrow->present)
{
outputrow++;
}
u16 exponent = outputrow->exponent;
// One column for each present data block
for (unsigned int col=0; col<datapresent; col++)
{
leftmatrix[(row+datamissing) * incount + col] = G(database[datapresentindex[col]]).pow(exponent);
}
// One column for each each present recovery block that will be used for a missing data block
for (unsigned int col=0; col<datamissing; col++)
{
leftmatrix[(row+datamissing) * incount + col + datapresent] = 0;
}
if (datamissing > 0)
{
// One column for each missing data block
for (unsigned int col=0; col<datamissing; col++)
{
rightmatrix[(row+datamissing) * outcount + col] = G(database[datamissingindex[col]]).pow(exponent);
}
// One column for each missing recovery block
for (unsigned int col=0; col<parmissing; col++)
{
rightmatrix[(row+datamissing) * outcount + col + datamissing] = (row == col) ? 1 : 0;
}
}
outputrow++;
}
if (noiselevel > nlQuiet)
sout << "Constructing: done." << endl;
// Solve the matrices only if recovering data
if (datamissing > 0)
{
// Perform Gaussian Elimination and then delete the right matrix (which
// will no longer be required).
bool success = GaussElim(noiselevel, sout, serr, outcount, incount, leftmatrix, rightmatrix, datamissing);
delete [] rightmatrix;
return success;
}
return true;
}
// Use Gaussian Elimination to solve the matrices
template<class g>
inline bool ReedSolomon<g>::GaussElim(NoiseLevel noiselevel, std::ostream &sout, std::ostream &serr, unsigned int rows, unsigned int leftcols, G *leftmatrix, G *rightmatrix, unsigned int datamissing)
{
if (noiselevel >= nlDebug)
{
for (unsigned int row=0; row<rows; row++)
{
sout << ((row==0) ? "/" : (row==rows-1) ? "\\" : "|");
for (unsigned int col=0; col<leftcols; col++)
{
sout << " "
<< hex << setw(G::Bits>8?4:2) << setfill('0')
<< (unsigned int)leftmatrix[row*leftcols+col];
}
sout << ((row==0) ? " \\ /" : (row==rows-1) ? " / \\" : " | |");
for (unsigned int col=0; col<rows; col++)
{
sout << " "
<< hex << setw(G::Bits>8?4:2) << setfill('0')
<< (unsigned int)rightmatrix[row*rows+col];
}
sout << ((row==0) ? " \\" : (row==rows-1) ? " /" : " | |");
sout << endl;
sout << dec << setw(0) << setfill(' ');
}
}
// Because the matrices being operated on are Vandermonde matrices
// they are guaranteed not to be singular.
// Additionally, because Galois arithmetic is being used, all calculations
// involve exact values with no loss of precision. It is therefore
// not necessary to carry out any row or column swapping.
// Solve one row at a time
int progress = 0;
// For each row in the matrix
for (unsigned int row=0; row<datamissing; row++)
{
// NB Row and column swapping to find a non zero pivot value or to find the largest value
// is not necessary due to the nature of the arithmetic and construction of the RS matrix.
// Get the pivot value.
G pivotvalue = rightmatrix[row * rows + row];
assert(pivotvalue != 0);
if (pivotvalue == 0)
{
serr << "RS computation error." << endl;
return false;
}
// If the pivot value is not 1, then the whole row has to be scaled
if (pivotvalue != 1)
{
for (unsigned int col=0; col<leftcols; col++)
{
if (leftmatrix[row * leftcols + col] != 0)
{
leftmatrix[row * leftcols + col] /= pivotvalue;
}
}
rightmatrix[row * rows + row] = 1;
for (unsigned int col=row+1; col<rows; col++)
{
if (rightmatrix[row * rows + col] != 0)
{
rightmatrix[row * rows + col] /= pivotvalue;
}
}
}
// For every other row in the matrix
for (unsigned int row2=0; row2<rows; row2++)
{
// Define MPDL to skip reporting and speed things up
#ifndef MPDL
if (noiselevel > nlQuiet)
{
int newprogress = (row*rows+row2) * 1000 / (datamissing*rows);
if (progress != newprogress)
{
progress = newprogress;
sout << "Solving: " << progress/10 << '.' << progress%10 << "%\r" << flush;
}
}
#endif
if (row != row2)
{
// Get the scaling factor for this row.
G scalevalue = rightmatrix[row2 * rows + row];
if (scalevalue == 1)
{
// If the scaling factor happens to be 1, just subtract rows
for (unsigned int col=0; col<leftcols; col++)
{
if (leftmatrix[row * leftcols + col] != 0)
{
leftmatrix[row2 * leftcols + col] -= leftmatrix[row * leftcols + col];
}
}
for (unsigned int col=row; col<rows; col++)
{
if (rightmatrix[row * rows + col] != 0)
{
rightmatrix[row2 * rows + col] -= rightmatrix[row * rows + col];
}
}
}
else if (scalevalue != 0)
{
// If the scaling factor is not 0, then compute accordingly.
for (unsigned int col=0; col<leftcols; col++)
{
if (leftmatrix[row * leftcols + col] != 0)
{
leftmatrix[row2 * leftcols + col] -= leftmatrix[row * leftcols + col] * scalevalue;
}
}
for (unsigned int col=row; col<rows; col++)
{
if (rightmatrix[row * rows + col] != 0)
{
rightmatrix[row2 * rows + col] -= rightmatrix[row * rows + col] * scalevalue;
}
}
}
}
}
}
if (noiselevel > nlQuiet)
sout << "Solving: done." << endl;
if (noiselevel >= nlDebug)
{
for (unsigned int row=0; row<rows; row++)
{
sout << ((row==0) ? "/" : (row==rows-1) ? "\\" : "|");
for (unsigned int col=0; col<leftcols; col++)
{
sout << " "
<< hex << setw(G::Bits>8?4:2) << setfill('0')
<< (unsigned int)leftmatrix[row*leftcols+col];
}
sout << ((row==0) ? " \\ /" : (row==rows-1) ? " / \\" : " | |");
for (unsigned int col=0; col<rows; col++)
{
sout << " "
<< hex << setw(G::Bits>8?4:2) << setfill('0')
<< (unsigned int)rightmatrix[row*rows+col];
}
sout << ((row==0) ? " \\" : (row==rows-1) ? " /" : " | |");
sout << endl;
sout << dec << setw(0) << setfill(' ');
}
}
return true;
}
#endif // __REEDSOLOMON_H__