-
Notifications
You must be signed in to change notification settings - Fork 6
/
data_utils.py
188 lines (164 loc) · 7.51 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# encoding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
import random
import importlib
from tensorflow.python.platform import gfile
import tensorflow as tf
from knowledge_graph import *
import args
FLAGS = args.FLAGS
# Special vocabulary symbols
_PAD = b"_PAD"
_GO = b"_GO"
_EOS = b"_EOS"
_UNK = b"_UNK"
_KB = b"_KB"
_START_VOCAB = [_PAD, _GO, _EOS, _UNK, _KB]
read_kb = importlib.import_module('.'.join(FLAGS.data_dir.split('/'))+'.read_kb')
KG = KGraph(FLAGS.data_dir, lambda x: read_kb.read_in_graph(x))
nodes = KG.get_vocab_nodes()
str_nodes = KG.get_nodes()
edge_types = KG.get_edge_types()
print(edge_types)
print(len(nodes))
kbstart = 0
kbend = len(nodes) - 1
kdim = len(nodes)
edim = len(edge_types)
print(edim)
################################
import numpy as np
def load_embed(f):
s_arr = [line.strip().split('\t') for line in f.readlines()]
vec_arr = [[float(s) for s in line[1][1:-1].split(', ')] for line in s_arr]
name_arr = [line[0] for line in s_arr]
embed_dict = {}
for name, vec in zip(name_arr, vec_arr):
embed_dict[name] = vec
return embed_dict
with open(FLAGS.data_dir+'/transE/entityVector.txt', 'r') as fn, \
open(FLAGS.data_dir+'/transE/relationVector.txt', 'r') as fe:
node_dict = load_embed(fn)
edge_type_dict = load_embed(fe)
kbembed_size = len(node_dict[str_nodes[0]])*3
triple_num = FLAGS.fact_size
################################
PAD_ID = 0 + len(nodes)
GO_ID = 1 + len(nodes)
EOS_ID = 2 + len(nodes)
UNK_ID = 3 + len(nodes)
KB_ID = 4 + len(nodes)
# Regular expressions used to tokenize.
#_WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
_DIGIT_RE = re.compile(br"\d")
def basic_tokenizer(sentence):
"""Very basic tokenizer: split the sentence into a list of tokens."""
words = []
for space_separated_fragment in sentence.strip().split():
"""Plz costomize the tokenizer for different dataset"""
#TODO words.extend(_WORD_SPLIT.split(space_separated_fragment))
words.append(space_separated_fragment)
return [w for w in words if w]
def get_split_path(data_path):
data_dir, file_name = data_path.rsplit('/',1)
train_path = os.path.join(data_dir, 'train_' + file_name)
dev_path = os.path.join(data_dir, 'dev_' + file_name)
if not (gfile.Exists(train_path)) and ( not gfile.Exists(dev_path) ):
if not (gfile.Exists(data_path)):
raise ValueError("Source file %s not found.", data_path)
raise ValueError("Train file or development file not found.")
return (train_path, dev_path)
def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
tokenizer=None, normalize_digits=True):
if not gfile.Exists(vocabulary_path):
print("Creating vocabulary %s from data %s" % (vocabulary_path, data_path))
vocab = {}
with gfile.GFile(data_path, mode="rb") as f:
counter = 0
for line in f:
counter += 1
if counter % 100000 == 0:
print(" processing line %d" % counter)
line = tf.compat.as_bytes(line)
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
for w in tokens:
word = _DIGIT_RE.sub(b"0", w) if normalize_digits else w
if word in vocab and word not in nodes:
vocab[word] += 1
elif word not in nodes:
vocab[word] = 1
vocab_list = nodes + _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True)
if len(vocab_list) > max_vocabulary_size:
vocab_list = vocab_list[:max_vocabulary_size]
with gfile.GFile(vocabulary_path, mode="wb") as vocab_file:
for w in vocab_list:
vocab_file.write(w + b"\n")
def initialize_vocabulary(vocabulary_path):
if gfile.Exists(vocabulary_path):
rev_vocab = []
with gfile.GFile(vocabulary_path, mode="r") as f:
rev_vocab.extend(f.readlines())
rev_vocab = [line.strip().encode('utf-8') for line in rev_vocab]
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
print(len(vocab))
print(len(rev_vocab))
return vocab, rev_vocab
else:
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
def sentence_to_token_ids(sentence, vocabulary,
tokenizer=None, normalize_digits=True):
if tokenizer:
words = tokenizer(sentence)
else:
words = basic_tokenizer(sentence)
if not normalize_digits:
return [vocabulary.get(w, UNK_ID) for w in words]
# Normalize digits by 0 before looking words up in the vocabulary.
return [vocabulary.get(_DIGIT_RE.sub(b"0", w), UNK_ID) for w in words]
def data_to_token_ids(data_path, target_path, vocabulary_path,
tokenizer=None, normalize_digits=True):
if not gfile.Exists(target_path):
print("Tokenizing data in %s" % data_path)
vocab, _ = initialize_vocabulary(vocabulary_path)
with gfile.GFile(data_path, mode="rb") as data_file:
with gfile.GFile(target_path, mode="w") as tokens_file:
counter = 0
for line in data_file:
counter += 1
if counter % 100000 == 0:
print(" tokenizing line %d" % counter)
token_ids = sentence_to_token_ids(tf.compat.as_bytes(line), vocab,
tokenizer, normalize_digits)
tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
def prepare_data(data_dir, data_path, vocabulary_size, tokenizer=None):
train_path, dev_path = get_split_path(data_path)
vocab_path = os.path.join(data_dir, "vocab%d" % vocabulary_size)
create_vocabulary(vocab_path, train_path, vocabulary_size, tokenizer, normalize_digits=False)
train_ids_path = train_path + (".ids%d" % vocabulary_size)
data_to_token_ids(train_path, train_ids_path, vocab_path, tokenizer, normalize_digits=False)
dev_ids_path = dev_path + (".ids%d" % vocabulary_size)
data_to_token_ids(dev_path, dev_ids_path, vocab_path, tokenizer, normalize_digits=False)
return (train_ids_path, dev_ids_path, vocab_path)
def prepare_info(data_dir, data_path):
train_path, dev_path = get_split_path(data_path)
train_info_path = train_path.rsplit('.',1)[0] + (".info")
dev_info_path = dev_path.rsplit('.',1)[0] + (".info")
return (train_info_path, dev_info_path)
def prepare_kb(data_dir, data_path):
train_path, dev_path = get_split_path(data_path)
train_kb_path = train_path.rsplit('.',1)[0] + (".sp5")
dev_kb_path = dev_path.rsplit('.',1)[0] + (".sp5")
return (train_kb_path, dev_kb_path)
def test_info_data(data_dir, data_path, vocabulary_size, tokenizer=None):
data_dir, file_name = data_path.rsplit('/',1)
test_path = os.path.join(data_dir, 'test_' + file_name)
test_ids_path = test_path + (".ids%d" % vocabulary_size)
vocab_path = os.path.join(data_dir, "vocab%d" % vocabulary_size)
data_to_token_ids(test_path, test_ids_path, vocab_path, tokenizer, normalize_digits=False)
test_info_path = test_path.rsplit('.',1)[0] + (".info")
test_kb_path = test_path.rsplit('.',1)[0] + (".sp5")
return (test_ids_path, test_info_path, test_kb_path)