-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
404 lines (336 loc) · 17.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import tensorflow as tf
import numpy as np
import pickle
import json
import random
import re
import os
import sys
import time
import math
import code
import collections
import importlib
from main_model import main_model
from test_funcs import create_out_results, create_path_results, compute_acc
from change_test_funcs import ifchange
from batch_utils import *
import data_utils
import args
FLAGS = args.FLAGS
_buckets = args._buckets
if FLAGS.test_type == 'train':
_buckets = _buckets
else:# evaluate, test
_buckets = [_buckets[-1]]
sys.path.insert(1, '/models')
###############################
# TRAINING PROCEDURE
###############################
def train(vocab_path, vocab, rev_vocab, config, more_conf):
def build_summaries():
train_loss = tf.Variable(0.)
tf.summary.scalar("train_loss", train_loss)
eval_losses = []
for ids, _ in enumerate(_buckets):
eval_losses.append(tf.Variable(0.))
tf.summary.scalar("eval_loss_{}".format(ids), eval_losses[-1])
summary_vars = [train_loss] + eval_losses
summary_ops = tf.summary.merge_all()
return summary_ops, summary_vars
print('enter train func')
print(vocab_path)
print(config)
print(more_conf)
# load in data
train, dev, _ = data_utils.prepare_data(FLAGS.data_dir, FLAGS.data_path, FLAGS.vocab_size)
train_info, dev_info = data_utils.prepare_info(FLAGS.data_dir, FLAGS.data_path)
train_kb, dev_kb = data_utils.prepare_kb(FLAGS.data_dir, FLAGS.data_path)
with tf.Session() as sess:
# build the model
print('[Step] building model...')
model = main_model(
'TRAIN', *config, **more_conf)
# build summary
# initialization
summary_ops, summary_vars = build_summaries()
sess.run(tf.variables_initializer(tf.global_variables()))
log_dir = os.path.join(FLAGS.model_dir, 'log')
writer = tf.summary.FileWriter(log_dir, sess.graph)
# restore checkpoint
ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir)
if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
print ('read in model from {}'.format(ckpt.model_checkpoint_path))
model.saver.restore(sess, ckpt.model_checkpoint_path)
# prepare data
print('[Step] read in data...')
train_set = read_info_data_with_buckets(train, train_info, train_kb, FLAGS.max_train_data_size, only_kb=False)
dev_set = read_info_data_with_buckets(dev, dev_info, dev_kb)
train_buckets_sizes = [len(train_set[b]) for b in range(len(_buckets))]
train_total_size = float(sum(train_buckets_sizes))
print ('each buckets has: {d}'.format(d=train_buckets_sizes))
train_buckets_scale = [sum(train_buckets_sizes[:i + 1]) / train_total_size
for i in range(len(train_buckets_sizes))]
step_time, loss = 0.0, 0.0
current_step = 0
previous_losses = []
print('[Step] start training...')
while True:
# prepare batch
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in range(len(train_buckets_scale))
if train_buckets_scale[i] > random_number_01])
encoder_inputs, decoder_inputs, targets, weights, masks, seq_lens, neAs, Ss, sub_facts, kg_indices = \
get_batch_with_buckets(train_set, FLAGS.batch_size, bucket_id)
# training step
start_time = time.time()
step_loss, _ \
= model.train_step(sess, encoder_inputs, \
decoder_inputs, targets, weights, masks, \
bucket_id, seq_lens, neAs, Ss, sub_facts, kg_indices)
step_time += (time.time() - start_time) / FLAGS.steps_per_checkpoint
loss += step_loss / FLAGS.steps_per_checkpoint
current_step += 1
# print progress
if current_step % FLAGS.steps_per_checkpoint == 0:
perplexity = math.exp(float(loss)) if loss < 300 else float('inf')
print("global step %d; learning rate %.4f;"
"step-time %.2f; perplexity %.2f; loss %.2f\n"
% (model.global_step.eval(), model.learning_rate.eval(),
step_time, perplexity, loss))
if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):
sess.run(model.op_lr_decay)
previous_losses.append(loss)
# eval
eval_losses = []
for bucket_id in range(len(_buckets)):
if len(dev_set[bucket_id]) == 0:
print(" eval: empty bucket %d" % (bucket_id))
eval_losses.append(0.)
continue
# prepare dev batch
encoder_inputs, decoder_inputs, targets, weights, masks, seq_lens, neAs, Ss, sub_facts, kg_indices = \
get_batch_with_buckets(dev_set, FLAGS.batch_size, bucket_id)
# eval step
eval_loss, outputs, _, _, _, _, _ \
= model.train_step(sess, encoder_inputs, \
decoder_inputs, targets, weights, masks, \
bucket_id, seq_lens, neAs, Ss, sub_facts, kg_indices, forward=True)
# print eval summary
eval_losses.append(eval_loss)
eval_ppx = math.exp(float(eval_loss)) if eval_loss < 300 else float("inf")
print(" eval: bucket %d perplexity %.2f; loss %.2f"
% (bucket_id, eval_ppx, eval_loss))
# write summary
feed_dict = {}
feed_dict[summary_vars[0]] = loss
for ids, key in enumerate(summary_vars[1:1+len(_buckets)]):
feed_dict[key] = eval_losses[ids]
summary_str = sess.run(summary_ops,
feed_dict=feed_dict)
writer.add_summary(summary_str, model.global_step.eval())
writer.flush()
# save checkpoint
# reset timer and loss
ckpt_path = os.path.join(FLAGS.model_dir, "ckpt")
model.saver.save(sess, ckpt_path, global_step=model.global_step)
step_time, loss = 0.0, 0.0
sys.stdout.flush()
###################################
# EVALUATION (w/ ground-truth inputs)
###################################
def evaluate(vocab_path, vocab, rev_vocab, config, more_conf):
print("enter evaluate func")
with tf.Session() as sess:
# build the model
print('[Step] building model...')
model = main_model(
'TRAIN', *config, **more_conf)
# initialize and store back parameters
sess.run(tf.variables_initializer(tf.global_variables()))
ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir)
model.saver.restore(sess, ckpt.model_checkpoint_path)
print ('read in model from {}'.format(ckpt.model_checkpoint_path))
if FLAGS.test_type == 'eval_pred_acc':
outs_dir = create_out_results('eval')
results_dirs = [outs_dir]
# using train/dev data
if FLAGS.data_type == 'train' or FLAGS.data_type == 'dev':
train, dev, _ = data_utils.prepare_data(FLAGS.data_dir, FLAGS.data_path, FLAGS.vocab_size)
train_kb, dev_kb = data_utils.prepare_kb(FLAGS.data_dir, FLAGS.data_path)
if FLAGS.data_type == 'dev':
test_set = read_info_data_with_buckets(dev, dev_info, FLAGS.max_train_data_size)
else:
# we do not test the whole training data
# but only randomly select a batch.
test_set = read_info_data_with_buckets(train, train_info, FLAGS.batch_size)
# using test data
else:
test, test_info, test_kb = data_utils.test_info_data(FLAGS.data_dir, FLAGS.data_path, FLAGS.vocab_size)
test_set = read_info_data_with_buckets(test, test_info, test_kb, FLAGS.max_train_data_size)
acc_nu, acc_de, tp_num, precision_de, ppx = 0, 0, 0, 0, 0
for i in range(math.floor(len(test_set[-1])/FLAGS.batch_size)):
data = get_batch_with_buckets(test_set, FLAGS.batch_size, -1, ifrand=False, idx=i)
values = compute_acc(sess, results_dirs, model, vocabs=(vocab, rev_vocab), data=data, batch_size=FLAGS.batch_size, feed_prev=False)
acc_nu += values[0]
acc_de += values[1] + values[2]
tp_num += values[1]
precision_de += values[1] + values[4]
ppx += values[-1]
print('True Positive = {}'.format(tp_num))
print('True Positive + False Negative = {}'.format(acc_de))
print('True Positive + False Positive = {}'.format(precision_de))
print('correct kb entity prediction = {}'.format(acc_nu))
print('KW_ACC = {}'.format(acc_nu/acc_de))
print('Recall = {}'.format(tp_num/acc_de))
print('Precision = {}'.format(tp_num/precision_de))
print('F1 = {}'.format(2/(1/(tp_num/acc_de)+1/(tp_num/precision_de))))
print('Avg Perplexity = {}'.format(2**(-ppx/FLAGS.batch_size/(i+1))))
###################################
# INFERENCE PROCEDURE
###################################
def test(vocab_path, vocab, rev_vocab, config, more_conf):
print("enter test func")
with tf.Session() as sess:
# build the model
print('[Step] building model...')
model = main_model(
'TEST', *config, **more_conf)
sess.run(tf.variables_initializer(tf.global_variables()))
ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir)
model.saver.restore(sess, ckpt.model_checkpoint_path)
print ('read in model from {}'.format(ckpt.model_checkpoint_path))
gate_model_dir = os.path.join(FLAGS.model_dir, 'ptr_gate')
ptr_ckpt = tf.train.get_checkpoint_state(gate_model_dir)
if ptr_ckpt and tf.train.checkpoint_exists(ptr_ckpt.model_checkpoint_path):
print ('read in model from {}'.format(ptr_ckpt.model_checkpoint_path))
model.ptr_saver.restore(sess, ptr_ckpt.model_checkpoint_path)
if FLAGS.test_type == 'pred_acc':
outs_dir = create_out_results('test')
paths_dir, kws_dir = create_path_results('test')
results_dirs = [outs_dir, paths_dir, kws_dir]
# using train/dev data
if FLAGS.data_type == 'train' or FLAGS.data_type == 'dev':
train, dev, _ = data_utils.prepare_data(FLAGS.data_dir, FLAGS.data_path, FLAGS.vocab_size)
train_info, dev_info = data_utils.prepare_info(FLAGS.data_dir, FLAGS.data_path)
train_kb, dev_kb = data_utils.prepare_kb(FLAGS.data_dir, FLAGS.data_path)
if FLAGS.data_type == 'dev':
test_set = read_info_data_with_buckets(dev, dev_info, dev_kb, FLAGS.max_train_data_size)
else:
test_set = read_info_data_with_buckets(train, train_info, train_kb, FLAGS.batch_size)
# using test data
else:
test, test_info, test_kb = data_utils.test_info_data(FLAGS.data_dir, FLAGS.data_path, FLAGS.vocab_size)
test_set = read_info_data_with_buckets(test, test_info, test_kb, FLAGS.max_train_data_size)
print(FLAGS.data_type)
print(test_set[0][0][0])
print(len(test_set))
print(len(test_set[0]))
accs, precs, counts, pcounts = 0, 0, 0, 0
sentence_bleus = 0.0
kb_counts, sssps_lens = {}, {}
distincts = [[] for _ in range(4)]
total_word_num = 0
for i in range(math.floor(len(test_set[-1])/FLAGS.batch_size)):
print(i)
data = get_batch_with_buckets(test_set, FLAGS.batch_size, -1, ifrand=False, idx=i)
values = compute_acc(sess, results_dirs, model, vocabs=(vocab, rev_vocab), data=data, batch_size=FLAGS.batch_size)
accs += values[0]
precs += values[1]
counts += values[2]
pcounts += values[3]
sentence_bleus += values[4]
for key, value in values[5].items():
if key not in kb_counts:
kb_counts[key] = value
else:
kb_counts[key] += value
for key, value in values[6].items():
if key not in sssps_lens:
sssps_lens[key] = value
else:
sssps_lens[key] += value
for k in range(4):
distincts[k] = list(set(values[7][k]) | set(distincts[k]))
total_word_num += values[8]
print('Avg Recall per sentence = {}/{} = {}'.format(accs, counts, accs/counts))
print('Avg Precision per sentence = {}/{} = {}'.format(precs, pcounts, precs/pcounts))
print('Avg F1 per sentence = {}'.format(2/(1/(precs/pcounts)+1/(accs/counts))))
print('sentence-level BLEU-2 = {}'.format(sentence_bleus/FLAGS.batch_size/(i+1)))
kb_proportion = {}
total_kb_count = sum(kb_counts.values())
print(total_kb_count)
for key, value in kb_counts.items():
kb_proportion[str(key)] = float(value) / total_kb_count
sorted_kb_by_values = sorted(kb_proportion.items(), key=lambda x: x[1])
sorted_kb_counts = collections.OrderedDict(sorted_kb_by_values)
with open(FLAGS.results_dir+'/sorted_kb_counts.json','w') as fkb_counts:
json.dump(sorted_kb_counts, fkb_counts, indent=2, ensure_ascii=False)
print(sssps_lens)
for k in range(4):
print('distinct-{} = {}'.format(k+1, len(distincts[k])/total_word_num))
elif FLAGS.test_type == 'ifchange':
outs_dir = create_out_results('change')
results_dirs = [outs_dir]
# create file to store outputs
'''
with open(FLAGS.results_dir+'/changed_outputs.txt','w'):
os.utime(FLAGS.results_dir+'/changed_outputs.txt',None)
'''
test, test_info, test_kb = data_utils.test_info_data(FLAGS.data_dir, FLAGS.data_path, FLAGS.vocab_size)
test_set = read_info_data_with_buckets(test, test_info, test_kb, FLAGS.max_train_data_size)
max_data_size = FLAGS.batch_size * math.floor(len(test_set[-1])/FLAGS.batch_size)
test_set, change_num = ifchange_read_info_data_with_buckets(test, test_info, test_kb, max_data_size, level=FLAGS.change_level)
have_changed, accu_changed = 0, 0
for i in range(math.floor(len(test_set[-1])/FLAGS.batch_size)):
print(i)
data = get_batch_with_buckets(test_set, FLAGS.batch_size, -1, ifrand=False, idx=i)
values = ifchange(sess, results_dirs, model, vocabs=(vocab, rev_vocab), data=data, batch_size=FLAGS.batch_size)
have_changed += values[0]
accu_changed += values[1]
print('Changed # KB entities in Responses: {}'.format(have_changed))
print('Accurately changed # KB entities in Responses: {}'.format(accu_changed))
print('# KB be changed: {}'.format(change_num))
print('KB changed rate: {}'.format(float(have_changed)/change_num))
print('KB accurately changed rate: {}'.format(float(accu_changed)/change_num))
###################################
# MAIN
###################################
if __name__ == '__main__':
# build vocabulary
vocab_path = os.path.join(FLAGS.data_dir, "vocab%d" % FLAGS.vocab_size)
vocab, rev_vocab = data_utils.initialize_vocabulary(vocab_path)
# basic config
config = (
FLAGS.model,
data_utils.kdim,
data_utils.edim+1,
data_utils.kbembed_size,
data_utils.triple_num,
FLAGS.size,
FLAGS.num_layers,
len(rev_vocab),
_buckets)
more_conf = {
'hops_num': FLAGS.hops_num,
'kgpath_len': FLAGS.kgpath_len,
'learning_rate': FLAGS.lr,
'learning_rate_decay_factor': FLAGS.lr_decay,
'max_gradient_norm': FLAGS.grad_norm,
'feed_prev': False,
'batch_size': FLAGS.batch_size,
'dtype': tf.float32}
shared_vars = (vocab_path, vocab, rev_vocab, config, more_conf)
# three types to build the model
if FLAGS.test_type == 'train':
if not os.path.exists(FLAGS.model_dir):
os.makedirs(FLAGS.model_dir)
with open('{}/model.conf'.format(FLAGS.model_dir),'w') as f:
for key, value in vars(FLAGS).items():
f.write("{}={}\n".format(key, value))
print('launch train()')
train(*shared_vars)
elif FLAGS.test_type == 'eval_pred_acc':
evaluate(*shared_vars)
else:
test(*shared_vars)