forked from charlesq34/pointnet2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modelnet_dataset.py
144 lines (125 loc) · 5.45 KB
/
modelnet_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
'''
ModelNet dataset. Support ModelNet40, ModelNet10, XYZ and normal channels. Up to 10000 points.
'''
import os
import os.path
import json
import numpy as np
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import provider
def pc_normalize(pc):
l = pc.shape[0]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
class ModelNetDataset():
def __init__(self, root, batch_size = 32, npoints = 1024, split='train', normalize=True, normal_channel=False, modelnet10=False, cache_size=15000, shuffle=None):
self.root = root
self.batch_size = batch_size
self.npoints = npoints
self.normalize = normalize
if modelnet10:
self.catfile = os.path.join(self.root, 'modelnet10_shape_names.txt')
else:
self.catfile = os.path.join(self.root, 'shape_names.txt')
self.cat = [line.rstrip() for line in open(self.catfile)]
self.classes = dict(zip(self.cat, range(len(self.cat))))
self.normal_channel = normal_channel
shape_ids = {}
if modelnet10:
shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_train.txt'))]
shape_ids['test']= [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_test.txt'))]
else:
shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))]
shape_ids['test']= [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))]
assert(split=='train' or split=='test')
shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]]
# list of (shape_name, shape_txt_file_path) tuple
self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i])+'.txt') for i in range(len(shape_ids[split]))]
self.cache_size = cache_size # how many data points to cache in memory
self.cache = {} # from index to (point_set, cls) tuple
if shuffle is None:
if split == 'train': self.shuffle = True
else: self.shuffle = False
else:
self.shuffle = shuffle
self.reset()
def _augment_batch_data(self, batch_data):
if self.normal_channel:
rotated_data = provider.rotate_point_cloud_with_normal(batch_data)
rotated_data = provider.rotate_perturbation_point_cloud_with_normal(rotated_data)
else:
rotated_data = provider.rotate_point_cloud(batch_data)
rotated_data = provider.rotate_perturbation_point_cloud(rotated_data)
jittered_data = provider.random_scale_point_cloud(rotated_data[:,:,0:3])
jittered_data = provider.shift_point_cloud(jittered_data)
jittered_data = provider.jitter_point_cloud(jittered_data)
rotated_data[:,:,0:3] = jittered_data
return provider.shuffle_points(rotated_data)
def _get_item(self, index):
if index in self.cache:
point_set, cls = self.cache[index]
else:
fn = self.datapath[index]
cls = self.classes[self.datapath[index][0]]
cls = np.array([cls]).astype(np.int32)
point_set = np.loadtxt(fn[1],delimiter=',').astype(np.float32)
# Take the first npoints
point_set = point_set[0:self.npoints,:]
if self.normalize:
point_set[:,0:3] = pc_normalize(point_set[:,0:3])
if not self.normal_channel:
point_set = point_set[:,0:3]
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, cls)
return point_set, cls
def __getitem__(self, index):
return self._get_item(index)
def __len__(self):
return len(self.datapath)
def num_channel(self):
if self.normal_channel:
return 6
else:
return 3
def reset(self):
self.idxs = np.arange(0, len(self.datapath))
if self.shuffle:
np.random.shuffle(self.idxs)
self.num_batches = (len(self.datapath)+self.batch_size-1) // self.batch_size
self.batch_idx = 0
def has_next_batch(self):
return self.batch_idx < self.num_batches
def next_batch(self, augment=False):
''' returned dimension may be smaller than self.batch_size '''
start_idx = self.batch_idx * self.batch_size
end_idx = min((self.batch_idx+1) * self.batch_size, len(self.datapath))
bsize = end_idx - start_idx
batch_data = np.zeros((bsize, self.npoints, self.num_channel()))
batch_label = np.zeros((bsize), dtype=np.int32)
for i in range(bsize):
ps,cls = self._get_item(self.idxs[i+start_idx])
batch_data[i] = ps
batch_label[i] = cls
self.batch_idx += 1
if augment: batch_data = self._augment_batch_data(batch_data)
return batch_data, batch_label
if __name__ == '__main__':
d = ModelNetDataset(root = '../data/modelnet40_normal_resampled', split='test')
print(d.shuffle)
print(len(d))
import time
tic = time.time()
for i in range(10):
ps, cls = d[i]
print(time.time() - tic)
print(ps.shape, type(ps), cls)
print(d.has_next_batch())
ps_batch, cls_batch = d.next_batch(True)
print(ps_batch.shape)
print(cls_batch.shape)