forked from philz1337x/clarity-upscaler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modified_controlnet.py
1302 lines (1111 loc) · 59.1 KB
/
modified_controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import gc
import tracemalloc
import os
import logging
from collections import OrderedDict
from copy import copy
from typing import Dict, Optional, Tuple, List, NamedTuple
import modules.scripts as scripts
from modules import shared, devices, script_callbacks, processing, masking, images
from modules.api.api import decode_base64_to_image
import gradio as gr
import time
from einops import rearrange
from scripts import global_state, hook, external_code, batch_hijack, controlnet_version, utils
from scripts.controlnet_lora import bind_control_lora, unbind_control_lora
from scripts.processor import *
from scripts.controlnet_lllite import clear_all_lllite
from scripts.controlmodel_ipadapter import clear_all_ip_adapter
from scripts.utils import load_state_dict, get_unique_axis0, align_dim_latent
from scripts.hook import ControlParams, UnetHook, HackedImageRNG
from scripts.enums import ControlModelType, StableDiffusionVersion, HiResFixOption
from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
from scripts.controlnet_ui.photopea import Photopea
from scripts.logging import logger
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, StableDiffusionProcessing
from modules.images import save_image
from scripts.infotext import Infotext
import cv2
import numpy as np
import torch
from PIL import Image, ImageFilter, ImageOps
from scripts.lvminthin import lvmin_thin, nake_nms
from scripts.processor import model_free_preprocessors
from scripts.controlnet_model_guess import build_model_by_guess, ControlModel
from scripts.hook import torch_dfs
# Gradio 3.32 bug fix
import tempfile
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_tempfile_path, exist_ok=True)
def clear_all_secondary_control_models(m):
all_modules = torch_dfs(m)
for module in all_modules:
_original_inner_forward_cn_hijack = getattr(module, '_original_inner_forward_cn_hijack', None)
original_forward_cn_hijack = getattr(module, 'original_forward_cn_hijack', None)
if _original_inner_forward_cn_hijack is not None:
module._forward = _original_inner_forward_cn_hijack
if original_forward_cn_hijack is not None:
module.forward = original_forward_cn_hijack
clear_all_lllite()
clear_all_ip_adapter()
def find_closest_lora_model_name(search: str):
if not search:
return None
if search in global_state.cn_models:
return search
search = search.lower()
if search in global_state.cn_models_names:
return global_state.cn_models_names.get(search)
applicable = [name for name in global_state.cn_models_names.keys()
if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return global_state.cn_models_names[applicable[0]]
def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
p.__class__ = processing.StableDiffusionProcessingTxt2Img
dummy = processing.StableDiffusionProcessingTxt2Img()
for k,v in dummy.__dict__.items():
if hasattr(p, k):
continue
setattr(p, k, v)
global_state.update_cn_models()
def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
if image is None:
return None
if isinstance(image, (tuple, list)):
image = {'image': image[0], 'mask': image[1]}
elif not isinstance(image, dict):
image = {'image': image, 'mask': None}
else: # type(image) is dict
# copy to enable modifying the dict and prevent response serialization error
image = dict(image)
if isinstance(image['image'], str):
if os.path.exists(image['image']):
image['image'] = np.array(Image.open(image['image'])).astype('uint8')
elif image['image']:
image['image'] = external_code.to_base64_nparray(image['image'])
else:
image['image'] = None
# If there is no image, return image with None image and None mask
if image['image'] is None:
image['mask'] = None
return image
if 'mask' not in image or image['mask'] is None:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
elif isinstance(image['mask'], str):
if os.path.exists(image['mask']):
image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
elif image['mask']:
image['mask'] = external_code.to_base64_nparray(image['mask'])
else:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
return image
def prepare_mask(
mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
"""
Prepare an image mask for the inpainting process.
This function takes as input a PIL Image object and an instance of the
StableDiffusionProcessing class, and performs the following steps to prepare the mask:
1. Convert the mask to grayscale (mode "L").
2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
invert the mask colors.
3. If the 'mask_blur' attribute of the processing instance is greater than 0,
apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.
Args:
mask (Image.Image): The input mask as a PIL Image object.
p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
containing the processing parameters.
Returns:
mask (Image.Image): The prepared mask as a PIL Image object.
"""
if isinstance(mask, np.ndarray):
mask = Image.fromarray(mask)
mask = mask.convert("L")
if getattr(p, "inpainting_mask_invert", False):
mask = ImageOps.invert(mask)
if hasattr(p, 'mask_blur_x'):
if getattr(p, "mask_blur_x", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
mask = Image.fromarray(np_mask)
if getattr(p, "mask_blur_y", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
mask = Image.fromarray(np_mask)
else:
if getattr(p, "mask_blur", 0) > 0:
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
return mask
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
"""
Set the random seed for NumPy based on the provided parameters.
Args:
p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class.
Returns:
Optional[int]: The computed random seed if successful, or None if an exception occurs.
This function sets the random seed for NumPy using the seed and subseed values from the given instance of
StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`.
Otherwise, it takes the maximum of the provided seed value and 0.
The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation
with 0xFFFFFFFF to ensure it fits within a 32-bit integer.
"""
try:
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
np.random.seed(seed)
return seed
except Exception as e:
logger.warning(e)
logger.warning('Warning: Failed to use consistent random seed.')
return None
def get_pytorch_control(x: np.ndarray) -> torch.Tensor:
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w')
y = y.clone()
y = y.to(devices.get_device_for("controlnet"))
y = y.clone()
return y
class Script(scripts.Script, metaclass=(
utils.TimeMeta if logger.level == logging.DEBUG else type)):
model_cache: Dict[str, ControlModel] = OrderedDict()
def __init__(self) -> None:
super().__init__()
self.latest_network = None
self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
self.unloadable = global_state.cn_preprocessor_unloadable
self.input_image = None
self.latest_model_hash = ""
self.enabled_units = []
self.detected_map = []
self.post_processors = []
self.noise_modifier = None
self.ui_batch_option_state = [external_code.BatchOption.DEFAULT.value, False]
batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)
def title(self):
return "ControlNet"
def show(self, is_img2img):
return scripts.AlwaysVisible
@staticmethod
def get_default_ui_unit(is_ui=True):
cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
return cls(
enabled=False,
module="none",
model="None"
)
def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str, photopea: Optional[Photopea]) -> Tuple[ControlNetUiGroup, gr.State]:
group = ControlNetUiGroup(
is_img2img,
Script.get_default_ui_unit(),
self.preprocessor,
photopea,
)
return group, group.render(tabname, elem_id_tabname)
def ui_batch_options(self, is_img2img: bool, elem_id_tabname: str):
batch_option = gr.Radio(
choices=[e.value for e in external_code.BatchOption],
value=external_code.BatchOption.DEFAULT.value,
label="Batch Option",
elem_id=f"{elem_id_tabname}_controlnet_batch_option_radio",
elem_classes="controlnet_batch_option_radio",
)
use_batch_style_align = gr.Checkbox(
label='[StyleAlign] Align image style in the batch.'
)
unit_args = [batch_option, use_batch_style_align]
def update_ui_batch_options(*args):
self.ui_batch_option_state = args
return
for comp in unit_args:
event_subscribers = []
if hasattr(comp, "edit"):
event_subscribers.append(comp.edit)
elif hasattr(comp, "click"):
event_subscribers.append(comp.click)
elif isinstance(comp, gr.Slider) and hasattr(comp, "release"):
event_subscribers.append(comp.release)
elif hasattr(comp, "change"):
event_subscribers.append(comp.change)
if hasattr(comp, "clear"):
event_subscribers.append(comp.clear)
for event_subscriber in event_subscribers:
event_subscriber(
fn=update_ui_batch_options, inputs=unit_args
)
return
def ui(self, is_img2img):
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be an array of all components that are used in processing.
Values of those returned components will be passed to run() and process() functions.
"""
infotext = Infotext()
ui_groups = []
controls = []
max_models = shared.opts.data.get("control_net_unit_count", 3)
elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
with gr.Group(elem_id=elem_id_tabname):
with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
photopea = Photopea() if not shared.opts.data.get("controlnet_disable_photopea_edit", False) else None
if max_models > 1:
with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
for i in range(max_models):
with gr.Tab(f"ControlNet Unit {i}",
elem_classes=['cnet-unit-tab']):
group, state = self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname, photopea)
ui_groups.append(group)
controls.append(state)
else:
with gr.Column():
group, state = self.uigroup(f"ControlNet", is_img2img, elem_id_tabname, photopea)
ui_groups.append(group)
controls.append(state)
with gr.Accordion(f"Batch Options", open=False, elem_id="controlnet_batch_options"):
self.ui_batch_options(is_img2img, elem_id_tabname)
for i, ui_group in enumerate(ui_groups):
infotext.register_unit(i, ui_group)
if shared.opts.data.get("control_net_sync_field_args", True):
self.infotext_fields = infotext.infotext_fields
self.paste_field_names = infotext.paste_field_names
return tuple(controls)
@staticmethod
def clear_control_model_cache():
Script.model_cache.clear()
gc.collect()
devices.torch_gc()
@staticmethod
def load_control_model(p, unet, model) -> ControlModel:
if model in Script.model_cache:
logger.info(f"Loading model from cache: {model}")
control_model = Script.model_cache[model]
if control_model.type == ControlModelType.Controlllite:
# Falls through to load Controlllite model fresh.
# TODO Fix context sharing issue for Controlllite.
pass
elif not control_model.type.allow_context_sharing():
# Creates a shallow-copy of control_model so that configs/inputs
# from different units can be bind correctly. While heavy objects
# of the underlying nn.Module is not copied.
return ControlModel(copy(control_model.model), control_model.type)
else:
return control_model
# Remove model from cache to clear space before building another model
if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
Script.model_cache.popitem(last=False)
gc.collect()
devices.torch_gc()
control_model = Script.build_control_model(p, unet, model)
if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
Script.model_cache[model] = control_model
return control_model
@staticmethod
def build_control_model(p, unet, model) -> ControlModel:
if model is None or model == 'None':
raise RuntimeError(f"You have not selected any ControlNet Model.")
model_path = global_state.cn_models.get(model, None)
if model_path is None:
model = find_closest_lora_model_name(model)
model_path = global_state.cn_models.get(model, None)
if model_path is None:
raise RuntimeError(f"model not found: {model}")
# trim '"' at start/end
if model_path.startswith("\"") and model_path.endswith("\""):
model_path = model_path[1:-1]
if not os.path.exists(model_path):
raise ValueError(f"file not found: {model_path}")
logger.info(f"Loading model: {model}")
state_dict = load_state_dict(model_path)
control_model = build_model_by_guess(state_dict, unet, model_path)
control_model.model.to('cpu', dtype=p.sd_model.dtype)
logger.info(f"ControlNet model {model}({control_model.type}) loaded.")
return control_model
@staticmethod
def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
if not force and not shared.opts.data.get("control_net_allow_script_control", False):
return default
def get_element(obj, strict=False):
if not isinstance(obj, list):
return obj if not strict or idx == 0 else None
elif idx < len(obj):
return obj[idx]
else:
return None
attribute_value = get_element(getattr(p, attribute, None), strict)
return attribute_value if attribute_value is not None else default
@staticmethod
def parse_remote_call(p, unit: external_code.ControlNetUnit, idx):
selector = Script.get_remote_call
unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
unit.module = selector(p, "control_net_module", unit.module, idx)
unit.model = selector(p, "control_net_model", unit.model, idx)
unit.weight = selector(p, "control_net_weight", unit.weight, idx)
unit.image = selector(p, "control_net_image", unit.image, idx)
unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
# Backward compatibility. See https://github.com/Mikubill/sd-webui-controlnet/issues/1740
# for more details.
unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)
return unit
@staticmethod
def detectmap_proc(detected_map, module, resize_mode, h, w):
if 'inpaint' in module:
detected_map = detected_map.astype(np.float32)
else:
detected_map = HWC3(detected_map)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def high_quality_resize(x, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
if x.shape[0] != size[1] or x.shape[1] != size[0]:
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
else:
y = x
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
if resize_mode == external_code.ResizeMode.RESIZE:
detected_map = high_quality_resize(detected_map, (w, h))
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
old_h, old_w, _ = detected_map.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
if resize_mode == external_code.ResizeMode.OUTER_FIT:
k = min(k0, k1)
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
detected_map = high_quality_background
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
else:
k = max(k0, k1)
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
@staticmethod
def get_enabled_units(p):
units = external_code.get_all_units_in_processing(p)
if len(units) == 0:
# fill a null group
remote_unit = Script.parse_remote_call(p, Script.get_default_ui_unit(), 0)
if remote_unit.enabled:
units.append(remote_unit)
enabled_units = []
for idx, unit in enumerate(units):
local_unit = Script.parse_remote_call(p, unit, idx)
if not local_unit.enabled:
continue
if hasattr(local_unit, "unfold_merged"):
enabled_units.extend(local_unit.unfold_merged())
else:
enabled_units.append(copy(local_unit))
Infotext.write_infotext(enabled_units, p)
return enabled_units
@staticmethod
def choose_input_image(
p: processing.StableDiffusionProcessing,
unit: external_code.ControlNetUnit,
idx: int
) -> Tuple[np.ndarray, external_code.ResizeMode]:
""" Choose input image from following sources with descending priority:
- p.image_control: [Deprecated] Lagacy way to pass image to controlnet.
- p.control_net_input_image: [Deprecated] Lagacy way to pass image to controlnet.
- unit.image: ControlNet tab input image.
- p.init_images: A1111 img2img tab input image.
Returns:
- The input image in ndarray form.
- The resize mode.
"""
def parse_unit_image(unit: external_code.ControlNetUnit) -> Union[List[Dict[str, np.ndarray]], Dict[str, np.ndarray]]:
unit_has_multiple_images = (
isinstance(unit.image, list) and
len(unit.image) > 0 and
"image" in unit.image[0]
)
if unit_has_multiple_images:
return [
d
for img in unit.image
for d in (image_dict_from_any(img),)
if d is not None
]
return image_dict_from_any(unit.image)
def decode_image(img) -> np.ndarray:
"""Need to check the image for API compatibility."""
if isinstance(img, str):
return np.asarray(decode_base64_to_image(image['image']))
else:
assert isinstance(img, np.ndarray)
return img
# 4 input image sources.
p_image_control = getattr(p, "image_control", None)
p_input_image = Script.get_remote_call(p, "control_net_input_image", None, idx)
image = parse_unit_image(unit)
a1111_image = getattr(p, "init_images", [None])[0]
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
if batch_hijack.instance.is_batch and p_image_control is not None:
logger.warning("Warn: Using legacy field 'p.image_control'.")
input_image = HWC3(np.asarray(p_image_control))
elif p_input_image is not None:
logger.warning("Warn: Using legacy field 'p.controlnet_input_image'")
if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
color = HWC3(np.asarray(p_input_image['image']))
alpha = np.asarray(p_input_image['mask'])[..., None]
input_image = np.concatenate([color, alpha], axis=2)
else:
input_image = HWC3(np.asarray(p_input_image))
elif image:
if isinstance(image, list):
# Add mask logic if later there is a processor that accepts mask
# on multiple inputs.
input_image = [HWC3(decode_image(img['image'])) for img in image]
else:
input_image = HWC3(decode_image(image['image']))
if 'mask' in image and image['mask'] is not None:
while len(image['mask'].shape) < 3:
image['mask'] = image['mask'][..., np.newaxis]
if 'inpaint' in unit.module:
logger.info("using inpaint as input")
color = HWC3(image['image'])
alpha = image['mask'][:, :, 0:1]
input_image = np.concatenate([color, alpha], axis=2)
elif (
not shared.opts.data.get("controlnet_ignore_noninpaint_mask", False) and
# There is wield gradio issue that would produce mask that is
# not pure color when no scribble is made on canvas.
# See https://github.com/Mikubill/sd-webui-controlnet/issues/1638.
not (
(image['mask'][:, :, 0] <= 5).all() or
(image['mask'][:, :, 0] >= 250).all()
)
):
logger.info("using mask as input")
input_image = HWC3(image['mask'][:, :, 0])
unit.module = 'none' # Always use black bg and white line
elif a1111_image is not None:
input_image = HWC3(np.asarray(a1111_image))
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
assert a1111_i2i_resize_mode is not None
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
if 'inpaint' in unit.module:
if a1111_mask_image is not None:
a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
assert a1111_mask.ndim == 2
assert a1111_mask.shape[0] == input_image.shape[0]
assert a1111_mask.shape[1] == input_image.shape[1]
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
else:
input_image = np.concatenate([
input_image[:, :, 0:3],
np.zeros_like(input_image, dtype=np.uint8)[:, :, 0:1],
], axis=2)
else:
# No input image detected.
if batch_hijack.instance.is_batch:
shared.state.interrupted = True
raise ValueError("controlnet is enabled but no input image is given")
assert isinstance(input_image, (np.ndarray, list))
return input_image, resize_mode
@staticmethod
def try_crop_image_with_a1111_mask(
p: StableDiffusionProcessing,
unit: external_code.ControlNetUnit,
input_image: np.ndarray,
resize_mode: external_code.ResizeMode,
) -> np.ndarray:
"""
Crop ControlNet input image based on A1111 inpaint mask given.
This logic is crutial in upscale scripts, as they use A1111 mask + inpaint_full_res
to crop tiles.
"""
# Note: The method determining whether the active script is an upscale script is purely
# based on `extra_generation_params` these scripts attach on `p`, and subject to change
# in the future.
# TODO: Change this to a more robust condition once A1111 offers a way to verify script name.
is_upscale_script = any("upscale" in k.lower() for k in getattr(p, "extra_generation_params", {}).keys())
logger.debug(f"is_upscale_script={is_upscale_script}")
# Note: `inpaint_full_res` is "inpaint area" on UI. The flag is `True` when "Only masked"
# option is selected.
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
is_only_masked_inpaint = (
issubclass(type(p), StableDiffusionProcessingImg2Img) and
p.inpaint_full_res and
a1111_mask_image is not None
)
if (
'reference' not in unit.module
and is_only_masked_inpaint
and (is_upscale_script or unit.inpaint_crop_input_image)
):
logger.debug("Crop input image based on A1111 mask.")
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
input_image = [Image.fromarray(x) for x in input_image]
mask = prepare_mask(a1111_mask_image, p)
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
input_image = [
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
for i in input_image
]
input_image = [x.crop(crop_region) for x in input_image]
input_image = [
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
for x in input_image
]
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
input_image = np.stack(input_image, axis=2)
return input_image
@staticmethod
def bound_check_params(unit: external_code.ControlNetUnit) -> None:
"""
Checks and corrects negative parameters in ControlNetUnit 'unit'.
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to
their default values if negative.
Args:
unit (external_code.ControlNetUnit): The ControlNetUnit instance to check.
"""
cfg = preprocessor_sliders_config.get(
global_state.get_module_basename(unit.module), [])
defaults = {
param: cfg_default['value']
for param, cfg_default in zip(
("processor_res", 'threshold_a', 'threshold_b'), cfg)
if cfg_default is not None
}
for param, default_value in defaults.items():
value = getattr(unit, param)
if value < 0:
setattr(unit, param, default_value)
logger.warning(f'[{unit.module}.{param}] Invalid value({value}), using default value {default_value}.')
@staticmethod
def check_sd_version_compatible(unit: external_code.ControlNetUnit) -> None:
"""
Checks whether the given ControlNet unit has model compatible with the currently
active sd model. An exception is thrown if ControlNet unit is detected to be
incompatible.
"""
sd_version = global_state.get_sd_version()
assert sd_version != StableDiffusionVersion.UNKNOWN
if "revision" in unit.module.lower() and sd_version != StableDiffusionVersion.SDXL:
raise Exception(f"Preprocessor 'revision' only supports SDXL. Current SD base model is {sd_version}.")
# No need to check if the ControlModelType does not require model to be present.
if unit.model is None or unit.model.lower() == "none":
return
cnet_sd_version = StableDiffusionVersion.detect_from_model_name(unit.model)
if cnet_sd_version == StableDiffusionVersion.UNKNOWN:
logger.warn(f"Unable to determine version for ControlNet model '{unit.model}'.")
return
if not sd_version.is_compatible_with(cnet_sd_version):
raise Exception(f"ControlNet model {unit.model}({cnet_sd_version}) is not compatible with sd model({sd_version})")
@staticmethod
def get_target_dimensions(p: StableDiffusionProcessing) -> Tuple[int, int, int, int]:
"""Returns (h, w, hr_h, hr_w)."""
h = align_dim_latent(p.height)
w = align_dim_latent(p.width)
high_res_fix = (
isinstance(p, StableDiffusionProcessingTxt2Img)
and getattr(p, 'enable_hr', False)
)
if high_res_fix:
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
hr_y = int(p.height * p.hr_scale)
hr_x = int(p.width * p.hr_scale)
else:
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
hr_y = align_dim_latent(hr_y)
hr_x = align_dim_latent(hr_x)
else:
hr_y = h
hr_x = w
return h, w, hr_y, hr_x
def controlnet_main_entry(self, p):
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
self.noise_modifier = None
setattr(p, 'controlnet_control_loras', [])
if self.latest_network is not None:
# always restore (~0.05s)
self.latest_network.restore()
# always clear (~0.05s)
clear_all_secondary_control_models(unet)
if not batch_hijack.instance.is_batch:
self.enabled_units = Script.get_enabled_units(p)
batch_option_uint_separate = self.ui_batch_option_state[0] == external_code.BatchOption.SEPARATE.value
batch_option_style_align = self.ui_batch_option_state[1]
if len(self.enabled_units) == 0 and not batch_option_style_align:
self.latest_network = None
return
logger.info(f"unit_separate = {batch_option_uint_separate}, style_align = {batch_option_style_align}")
detected_maps = []
forward_params = []
post_processors = []
# cache stuff
if self.latest_model_hash != p.sd_model.sd_model_hash:
Script.clear_control_model_cache()
for idx, unit in enumerate(self.enabled_units):
unit.module = global_state.get_module_basename(unit.module)
# unload unused preproc
module_list = [unit.module for unit in self.enabled_units]
for key in self.unloadable:
if key not in module_list:
self.unloadable.get(key, lambda:None)()
self.latest_model_hash = p.sd_model.sd_model_hash
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
h, w, hr_y, hr_x = Script.get_target_dimensions(p)
for idx, unit in enumerate(self.enabled_units):
Script.bound_check_params(unit)
Script.check_sd_version_compatible(unit)
if (
"ip-adapter" in unit.module and
not global_state.ip_adapter_pairing_model[unit.module](unit.model)
):
logger.error(f"Invalid pair of IP-Adapter preprocessor({unit.module}) and model({unit.model}).\n"
"Please follow following pairing logic:\n"
+ global_state.ip_adapter_pairing_logic_text)
continue
if (
'inpaint_only' == unit.module and
issubclass(type(p), StableDiffusionProcessingImg2Img) and
p.image_mask is not None
):
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. Falls back to inpaint_global_harmonious.')
unit.module = 'inpaint'
if unit.module in model_free_preprocessors:
model_net = None
if 'reference' in unit.module:
control_model_type = ControlModelType.AttentionInjection
elif 'revision' in unit.module:
control_model_type = ControlModelType.ReVision
else:
raise Exception("Unable to determine control_model_type.")
else:
model_net, control_model_type = Script.load_control_model(p, unet, unit.model)
model_net.reset()
if control_model_type == ControlModelType.ControlLoRA:
control_lora = model_net.control_model
bind_control_lora(unet, control_lora)
p.controlnet_control_loras.append(control_lora)
input_image, resize_mode = Script.choose_input_image(p, unit, idx)
if isinstance(input_image, list):
assert unit.accepts_multiple_inputs()
input_images = input_image
else: # Following operations are only for single input image.
input_image = Script.try_crop_image_with_a1111_mask(p, unit, input_image, resize_mode)
input_image = np.ascontiguousarray(input_image.copy()).copy() # safe numpy
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
# inpaint_only+lama is special and required outpaint fix
_, input_image = Script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
if unit.pixel_perfect:
unit.processor_res = external_code.pixel_perfect_resolution(
input_image,
target_H=h,
target_W=w,
resize_mode=resize_mode,
)
input_images = [input_image]
# Preprocessor result may depend on numpy random operations, use the
# random seed in `StableDiffusionProcessing` to make the
# preprocessor result reproducable.
# Currently following preprocessors use numpy random:
# - shuffle
seed = set_numpy_seed(p)
logger.debug(f"Use numpy seed {seed}.")
logger.info(f"Using preprocessor: {unit.module}")
logger.info(f'preprocessor resolution = {unit.processor_res}')
def store_detected_map(detected_map, module: str) -> None:
if unit.save_detected_map:
detected_maps.append((detected_map, module))
def preprocess_input_image(input_image: np.ndarray):
""" Preprocess single input image. """
detected_map, is_image = self.preprocessor[unit.module](
input_image,
res=unit.processor_res,
thr_a=unit.threshold_a,
thr_b=unit.threshold_b,
low_vram=(
("clip" in unit.module or unit.module == "ip-adapter_face_id_plus") and
shared.opts.data.get("controlnet_clip_detector_on_cpu", False)
),
)
if high_res_fix:
if is_image:
hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
store_detected_map(hr_detected_map, unit.module)
else:
hr_control = detected_map
else:
hr_control = None
if is_image:
control, detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
store_detected_map(detected_map, unit.module)
else:
control = detected_map
store_detected_map(input_image, unit.module)
if control_model_type == ControlModelType.T2I_StyleAdapter:
control = control['last_hidden_state']
if control_model_type == ControlModelType.ReVision:
control = control['image_embeds']
return control, hr_control
controls, hr_controls = list(zip(*[preprocess_input_image(img) for img in input_images]))
if len(controls) == len(hr_controls) == 1:
control = controls[0]
hr_control = hr_controls[0]
else:
control = controls
hr_control = hr_controls
preprocessor_dict = dict(
name=unit.module,
preprocessor_resolution=unit.processor_res,
threshold_a=unit.threshold_a,
threshold_b=unit.threshold_b
)
global_average_pooling = (
control_model_type.is_controlnet() and
model_net.control_model.global_average_pooling
)
control_mode = external_code.control_mode_from_value(unit.control_mode)
forward_param = ControlParams(
control_model=model_net,
preprocessor=preprocessor_dict,
hint_cond=control,
weight=unit.weight,
guidance_stopped=False,
start_guidance_percent=unit.guidance_start,
stop_guidance_percent=unit.guidance_end,
advanced_weighting=unit.advanced_weighting,