-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeck256k1.py
331 lines (276 loc) · 10.8 KB
/
speck256k1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from usefulfunctions import encode_base58_checksum, hash160
import hashlib
import hmac
from io import BytesIO
# some methods to do compuation on the Field elements
class FieldElement:
# dev num
# prime range
# initialize the field element
def __init__(self, num, prime):
if num >= prime or num < 0:
error = "Num {} not in field range 0 to {}".format(num, prime - 1)
raise ValueError(error)
self.num = num
self.prime = prime
def __repr__(self):
return "FieldElement_{}({})".format(self.prime, self.num)
def __eq__(self, other):
if other is None:
return False
return self.num == other.num and self.prime == other.prime
def __ne__(self, other):
return not (self == other)
def __add__(self, other):
if self.prime != other.prime:
raise TypeError("Cannot add two numbers in different Fields")
num = (self.num + other.num) % self.prime
return self.__class__(num, self.prime)
def __sub__(self, other):
if self.prime != other.prime:
raise TypeError("Cannot subtract two numbers in different Fields")
num = (self.num - other.num) % self.prime
return self.__class__(num, self.prime)
def __mul__(self, other):
if self.prime != other.prime:
raise TypeError("Cannot multiply two numbers in different Fields")
num = (self.num * other.num) % self.prime
return self.__class__(num, self.prime)
def __pow__(self, exponent):
n = exponent % (self.prime - 1)
num = pow(self.num, n, self.prime)
return self.__class__(num, self.prime)
def __truediv__(self, other):
if self.prime != other.prime:
raise TypeError("Cannot divide two numbers in different Fields")
num = (self.num * pow(other.num, self.prime - 2, self.prime)) % self.prime
return self.__class__(num, self.prime)
def __rmul__(self, coefficient):
num = (self.num * coefficient) % self.prime
return self.__class__(num=num, prime=self.prime)
# curve have a form y2 = x3 + ax + b,
# where a and b are constants specific to the curve
# Point class is used to represent a point on the curve
class Point:
def __init__(self, x, y, a, b):
self.a = a
self.b = b
self.x = x
self.y = y
if self.x is None and self.y is None:
return
# actucally on the curve
if self.y**2 != self.x**3 + a * x + b:
raise ValueError("({}, {}) is not on the curve".format(x, y))
def __eq__(self, other):
return (
self.x == other.x
and self.y == other.y
and self.a == other.a
and self.b == other.b
)
def __ne__(self, other):
return not (self == other)
def __repr__(self):
if self.x is None:
return "Point(infinity)"
elif isinstance(self.x, FieldElement):
return "Point({},{})_{}_{} FieldElement({})".format(
self.x.num, self.y.num, self.a.num, self.b.num, self.x.prime
)
else:
return "Point({},{})_{}_{}".format(self.x, self.y, self.a, self.b)
def __add__(self, other):
if self.a != other.a or self.b != other.b:
raise TypeError(
"Points {}, {} are not on the same curve".format(self, other)
)
# info self point is in infinity
if self.x is None:
return other
# info other point is in infinity
if other.x is None:
return self
# vertical line
# @return the point at infinity
if self.x == other.x and self.y != other.y:
return self.__class__(None, None, self.a, self.b)
# dev cal the slope of the line , s
# s = (y2 – y1)/(x2 – x1)
# x3 =s2 –x1 –x2
# y3 = s(x1 – x3) – y1
if self.x != other.x:
s = (other.y - self.y) / (other.x - self.x)
x = s**2 - self.x - other.x
y = s * (self.x - x) - self.y
return self.__class__(x, y, self.a, self.b)
# P1 = P2 and also the vertical line
# return the point at infinity
if self == other and self.y == 0 * self.x:
return self.__class__(None, None, self.a, self.b)
# P1 = P2 , tangent line
# slope s = (3 * x1^2 + a) / (2 * y1)
# x3 = s^2 – 2 * x1
# y3 = s * (x1 – x3) – y1
# return P3
if self == other:
s = (3 * self.x**2 + self.a) / (2 * self.y)
x = s**2 - 2 * self.x
y = s * (self.x - x) - self.y
return self.__class__(x, y, self.a, self.b)
def __rmul__(self, coefficient):
coef = coefficient
current = self
result = self.__class__(None, None, self.a, self.b)
while coef:
if coef & 1:
result += current
current += current
coef >>= 1
return result
# upper are the general cure and their fundamentals methods
# specfic curve for bitcoin
# a = 0, b = 7, making the equation y2 = x3 + 7
A = 0
B = 7
P = 2**256 - 2**32 - 977
N = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
# defined the field element for P = 2**256 - 2**32 - 977
class S256Field(FieldElement):
def __init__(self, num, prime=None):
super().__init__(num=num, prime=P)
def __repr__(self):
return "{:x}".format(self.num).zfill(64)
def sqrt(self):
return self ** ((P + 1) // 4)
# Public key cryptogrpahy operations
# P = eG, in which we can easily generate a P if we know e and G but cannot but we cannot easily compute e when we know P and G
# e the provate key and Public key
# private key is a 256 number and Public key P is a point on the curve (x,y) where x, y is 256 bits number .
class S256Point(Point):
def __init__(self, x, y, a=None, b=None):
a, b = S256Field(A), S256Field(B)
if type(x) == int:
super().__init__(x=S256Field(x), y=S256Field(y), a=a, b=b)
else:
super().__init__(x=x, y=y, a=a, b=b)
def __repr__(self):
if self.x is None:
return "S256Point(infinity)"
else:
return "S256Point({}, {})".format(self.x, self.y)
def __rmul__(self, coefficient):
coef = coefficient % N
return super().__rmul__(coef)
# Note that we use Fermat’s little theorem for 1/s, since n is prime.
# u=z/s , v=r/s.
def verify(self, z, sig):
# little fermat theorem
s_inv = pow(sig.s, N - 2, N)
u = z * s_inv % N
v = sig.r * s_inv % N
total = u * G + v * self
return total.x.num == sig.r
# uncompressed SEC format for a given point P = (x,y) is generated:
# - Start with the prefix byte, which is 0x04.
# - Append the x coordinate in 32 bytes as a big-endian integer.
# - Append the y coordinate in 32 bytes as a big-endian integer.
# compressed SEC format for a given point P = (x,y) is generated:
# - 02 if y is even and 03 if Y is odd .
# - Append the x coordinate in 32 bytes as a big-endian integer.
def sec(self, compressed=True):
if compressed:
if self.y.num % 2 == 0:
return b"\x02" + self.x.num.to_bytes(32, "big")
else:
return b"\x03" + self.x.num.to_bytes(32, "big")
else:
return (
b"\x04"
+ self.x.num.to_bytes(32, "big")
+ self.y.num.to_bytes(32, "big")
)
def hash160(self, compressed=True):
return hash160(self.sec(compressed))
def address(self, compressed=True, testnet=False):
"""Returns the address string"""
h160 = self.hash160(compressed)
if testnet:
prefix = b"\x6f"
else:
prefix = b"\x00"
return encode_base58_checksum(prefix + h160)
@classmethod
def parse(self, sec_bin):
"""returns a Point object from a SEC binary (not hex)"""
if sec_bin[0] == 4:
x = int.from_bytes(sec_bin[1:33], "big")
y = int.from_bytes(sec_bin[33:65], "big")
return S256Point(x=x, y=y)
is_even = sec_bin[0] == 2
x = S256Field(int.from_bytes(sec_bin[1:], "big"))
# right side of the equation y^2 = x^3 + 7
alpha = x**3 + S256Field(B)
# solve for left side
beta = alpha.sqrt()
if beta.num % 2 == 0:
even_beta = beta
odd_beta = S256Field(P - beta.num)
else:
even_beta = S256Field(P - beta.num)
odd_beta = beta
if is_even:
return S256Point(x, even_beta)
else:
return S256Point(x, odd_beta)
G = S256Point(
0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,
0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8,
)
# DER signature format is defined like this:
# 1. Start with the 0x30 byte.
# 2. Encode the length of the rest of the signature (usually 0x44 or 0x45) and append.
# 3. Append the marker byte, 0x02.
# 4. Encode r as a big-endian integer, but prepend it with the 0x00 byte if r’s first byte ≥ 0x80. Prepend the resulting length to r. Add this to the result.
# 5. Append the marker byte, 0x02.
# 6. Encode s as a big-endian integer, but prepend with the 0x00 byte if s’s first byte ≥ 0x80. Prepend the resulting length to s. Add this to the result.
class Signature:
def __init__(self, r, s):
self.r = r
self.s = s
def __repr__(self):
return "Signature({:x},{:x})".format(self.r, self.s)
def der(self):
rbin = self.r.to_bytes(32, byteorder="big")
rbin = rbin.lstrip(b"\x00")
if rbin[0] & 0x80:
rbin = b"\x00" + rbin
result = bytes([2, len(rbin)]) + rbin
sbin = self.s.to_bytes(32, byteorder="big")
sbin = sbin.lstrip(b"\x00")
if sbin[0] & 0x80:
sbin = b"\x00" + sbin
result += bytes([2, len(sbin)]) + sbin
return bytes([0x30, len(result)]) + result
@classmethod
def parse(cls, signature_bin):
s = BytesIO(signature_bin)
compound = s.read(1)[0]
if compound != 0x30:
raise SyntaxError("Bad Signature")
length = s.read(1)[0]
if length + 2 != len(signature_bin):
raise SyntaxError("Bad Signature Length")
marker = s.read(1)[0]
if marker != 0x02:
raise SyntaxError("Bad Signature")
rlength = s.read(1)[0]
r = int.from_bytes(s.read(rlength), "big")
marker = s.read(1)[0]
if marker != 0x02:
raise SyntaxError("Bad Signature")
slength = s.read(1)[0]
s = int.from_bytes(s.read(slength), "big")
if len(signature_bin) != 6 + rlength + slength:
raise SyntaxError("Signature too long")
return cls(r, s)