Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

how to use makefile in win10? #18

Open
GanWang opened this issue Jun 24, 2019 · 2 comments
Open

how to use makefile in win10? #18

GanWang opened this issue Jun 24, 2019 · 2 comments

Comments

@GanWang
Copy link

GanWang commented Jun 24, 2019

I am a novice, and I am learning the demo you provided. I don't know how to use the makefile file in the lanms folder, can you help me?(I use win10)

@Pay20Y
Copy link
Owner

Pay20Y commented Jun 24, 2019

Maybe here will help you.

@aligoglos
Copy link

I've solved the issue by create this build script :

# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

import os
from os.path import join as pjoin
import numpy as np
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext


def find_in_path(name, path):
    "Find a file in a search path"
    # adapted fom http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/
    for dir in path.split(os.pathsep):
        binpath = pjoin(dir, name)
        if os.path.exists(binpath):
            return os.path.abspath(binpath)
    return None


def locate_cuda():
    """Locate the CUDA environment on the system

    Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64'
    and values giving the absolute path to each directory.

    Starts by looking for the CUDAHOME env variable. If not found, everything
    is based on finding 'nvcc' in the PATH.
    """

    # first check if the CUDAHOME env variable is in use
    if 'CUDAHOME' in os.environ:
        home = os.environ['CUDAHOME']
        nvcc = pjoin(home, 'bin')
    else:
        # otherwise, search the PATH for NVCC
        default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin')
        nvcc = find_in_path('nvcc', os.environ['PATH'] + os.pathsep + default_path)
        if nvcc is None:
            raise EnvironmentError('The nvcc binary could not be '
                                   'located in your $PATH. Either add it to your path, or set $CUDAHOME')
        home = os.path.dirname(os.path.dirname(nvcc))

    cudaconfig = {'home': home, 'nvcc': nvcc,
                  'include': pjoin(home, 'include'),
                  'lib64': pjoin(home, 'lib/x64')}
    for k, v in cudaconfig.items():
        if not os.path.exists(v):
            raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v))

    return cudaconfig


CUDA = locate_cuda()

# Obtain the numpy include directory.  This logic works across numpy versions.
try:
    numpy_include = np.get_include()
except AttributeError:
    numpy_include = np.get_numpy_include()


def customize_compiler_for_nvcc(self):
    """inject deep into distutils to customize how the dispatch
    to gcc/nvcc works.

    If you subclass UnixCCompiler, it's not trivial to get your subclass
    injected in, and still have the right customizations (i.e.
    distutils.sysconfig.customize_compiler) run on it. So instead of going
    the OO route, I have this. Note, it's kindof like a wierd functional
    subclassing going on."""

    # tell the compiler it can processes .cu
    self.src_extensions.append('.cu')

    # save references to the default compiler_so and _comple methods
    #default_compiler_so = self.compiler_so
    super = self._compile

    # now redefine the _compile method. This gets executed for each
    # object but distutils doesn't have the ability to change compilers
    # based on source extension: we add it.
    def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
        print(extra_postargs)
        if os.path.splitext(src)[1] == '.cu':
            # use the cuda for .cu files
            self.set_executable('compiler_so', CUDA['nvcc'])
            # use only a subset of the extra_postargs, which are 1-1 translated
            # from the extra_compile_args in the Extension class
            postargs = extra_postargs['nvcc']
        else:
            postargs = extra_postargs['gcc']

        super(obj, src, ext, cc_args, postargs, pp_opts)
        # reset the default compiler_so, which we might have changed for cuda
        self.compiler_so = default_compiler_so

    # inject our redefined _compile method into the class
    self._compile = _compile


# run the customize_compiler
class custom_build_ext(build_ext):
    def build_extensions(self):
        customize_compiler_for_nvcc(self.compiler)
        build_ext.build_extensions(self)


ext_modules = [
    Extension(
        'lanms.adaptor',
        sources=[ 'adaptor.cpp', 'include/clipper/clipper.cpp'],
        include_dirs=[numpy_include, './' , 'include/clipper', 'include/'],
        extra_compile_args={
            'gcc': ['-Wno-cpp', '-Wno-unused-function', '-std=c99']},
    ),
]

setup(
    name='lanms',
    ext_modules=ext_modules,
    # inject our custom trigger
    cmdclass={'build_ext': custom_build_ext},
)


Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants