-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfinetune.py
502 lines (418 loc) · 18.9 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import time
import logging
import warnings
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from pyhocon import ConfigTree
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from arguments import Args
from datasets.classification import DataLoaderFactoryV3
from framework import utils
from framework.config import get_config, save_config
from framework.logging import set_logging_basic_config
from framework.meters.average import AverageMeter
from framework.metrics.classification import accuracy
from framework.utils import CheckpointManager, pack_code
from models import ModelFactory
logger = logging.getLogger(__name__)
class EpochContext:
def __init__(self, engine: 'Engine', name: str, n_crop: int, dataloader, tensorboard_prefix: str):
self.engine = engine
self.log_interval = engine.cfg.get_int('log_interval')
self.n_crop = n_crop
self.name = name
self.dataloader = dataloader
self.tensorboard_prefix = tensorboard_prefix
self.dataloader.set_epoch(self.engine.current_epoch)
# start dataloader early for better performance
self.data_iter = iter(dataloader)
device = self.engine.device
self.loss_meter = AverageMeter('Loss', device=device) # This place displays decimals directly because the loss is relatively large
self.top1_meter = AverageMeter('Acc@1', fmt=':6.2f', device=device)
self.top5_meter = AverageMeter('Acc@5', fmt=':6.2f', device=device)
def reshape_clip(self, clip: torch.FloatTensor):
if self.n_crop == 1:
return clip
clip = clip.refine_names('batch', 'channel', 'time', 'height', 'width')
crop_len = clip.size(2) // self.n_crop
clip = clip.unflatten('time', [('crop', self.n_crop), ('time', crop_len)])
clip = clip.align_to('batch', 'crop', ...)
clip = clip.flatten(['batch', 'crop'], 'batch')
return clip.rename(None)
def average_logits(self, logits: torch.FloatTensor):
if self.n_crop == 1:
return logits
logits = logits.refine_names('batch', 'class')
num_sample = logits.size(0) // self.n_crop
logits = logits.unflatten('batch', [('batch', num_sample), ('crop', self.n_crop)])
logits = logits.mean(dim='crop')
return logits.rename(None)
def meters(self):
yield self.loss_meter
yield self.top1_meter
yield self.top5_meter
def sync_meters(self):
for m in self.meters():
m.sync_distributed()
def write_tensorboard(self):
epoch = self.engine.current_epoch
prefix = self.tensorboard_prefix
tb = self.engine.summary_writer
if tb is None:
return
tb.add_scalar(
f'{prefix}/loss', self.loss_meter.avg, epoch
)
tb.add_scalar(
f'{prefix}/acc1', self.top1_meter.avg, epoch
)
tb.add_scalar(
f'{prefix}/acc5', self.top5_meter.avg, epoch
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.write_tensorboard()
def forward(self):
logger.info('%s epoch begin.', self.name)
begin_time = time.perf_counter()
num_iters = len(self.dataloader)
remaining_valid_samples = self.dataloader.num_valid_samples()
for i, ((clip,), target, *others) in enumerate(self.data_iter):
clip = self.reshape_clip(clip)
output = self.engine.model(clip)
output = self.average_logits(output)
loss = self.engine.criterion(output, target)
# This will make tensorboard load very slow. enable if needed
# if self.engine.summary_writer is not None:
# self.engine.summary_writer.add_scalar(f'step/{self.tensorboard_prefix}/loss', loss,
# self.engine.current_epoch * num_iters + i)
batch_size = target.size(0)
if batch_size > remaining_valid_samples:
# Distributed sampler will add some repeated samples. cut them off.
output = output[:remaining_valid_samples]
target = target[:remaining_valid_samples]
others = [o[:remaining_valid_samples] for o in others]
batch_size = remaining_valid_samples
remaining_valid_samples -= batch_size
if batch_size == 0:
continue
if i > 0 and i % self.log_interval == 0:
# Do logging as late as possible. this will force CUDA sync.
# Log numbers from last iteration, just before update
logger.info(
f'{self.name} [{self.engine.current_epoch}/{self.engine.num_epochs}][{i - 1}/{num_iters}]\t'
f'{self.loss_meter}\t{self.top1_meter}\t{self.top5_meter}'
)
num_classes = output.size(1)
if num_classes >= 5:
acc1, acc5 = accuracy(output, target, topk=(1, 5))
self.top1_meter.update(acc1, batch_size)
self.top5_meter.update(acc5, batch_size)
else:
acc1, = accuracy(output, target, topk=(1,))
self.top1_meter.update(acc1, batch_size)
self.loss_meter.update(loss, batch_size)
yield loss, output, others
end_time = time.perf_counter()
logger.info('%s epoch finished. Time: %.2f sec.\t%s\t%s\t%s', self.name, end_time - begin_time, *self.meters())
class Engine:
def __init__(self, args: Args, cfg: ConfigTree, local_rank: int, final_validate=False):
self.args = args
self.cfg = cfg
self.local_rank = local_rank
self.model_factory = ModelFactory(cfg)
self.data_loader_factory = DataLoaderFactoryV3(cfg, final_validate)
self.final_validate = final_validate
self.device = torch.device(
f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
model_type = cfg.get_string('model_type')
if model_type == '1stream':
self.model = self.model_factory.build(local_rank) # basic model
elif model_type == 'multitask':
self.model = self.model_factory.build_multitask_wrapper(local_rank)
else:
raise ValueError(f'Unrecognized model_type "{model_type}"')
if not final_validate:
self.train_loader = self.data_loader_factory.build(
vid=False, # need label to gpu
split='train',
device=self.device
)
self.validate_loader = self.data_loader_factory.build(
vid=False,
split='val',
device=self.device
)
if final_validate:
self.n_crop = cfg.get_int('temporal_transforms.validate.final_n_crop')
else:
self.n_crop = cfg.get_int('temporal_transforms.validate.n_crop')
self.criterion = nn.CrossEntropyLoss()
self.learning_rate = self.cfg.get_float('optimizer.lr')
optimizer_type = self.cfg.get_string('optimizer.type', default='sgd')
if optimizer_type == 'sgd':
self.optimizer = torch.optim.SGD(
self.model.parameters(),
lr=self.learning_rate,
momentum=self.cfg.get_float('optimizer.momentum'),
dampening=self.cfg.get_float('optimizer.dampening'),
weight_decay=self.cfg.get_float('optimizer.weight_decay'),
nesterov=self.cfg.get_bool('optimizer.nesterov'),
)
elif optimizer_type == 'adam':
self.optimizer = torch.optim.Adam(
self.model.parameters(),
lr=self.learning_rate,
eps=self.cfg.get_float('optimizer.eps'),
)
else:
raise ValueError(f'Unknown optimizer {optimizer_type})')
self.num_epochs = cfg.get_int('num_epochs')
self.schedule_type = self.cfg.get_string('optimizer.schedule')
if self.schedule_type == "plateau":
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer=self.optimizer,
mode='min',
patience=self.cfg.get_int('optimizer.patience'),
verbose=True
)
elif self.schedule_type == "multi_step":
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer=self.optimizer,
milestones=self.cfg.get("optimizer.milestones"),
)
elif self.schedule_type == "cosine":
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=self.optimizer,
T_max=self.num_epochs,
eta_min=self.learning_rate / 1000
)
elif self.schedule_type == 'none':
self.scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer=self.optimizer,
lr_lambda=lambda epoch: 1,
)
else:
raise ValueError("Unknow schedule type")
self.arch = cfg.get_string('model.arch')
if local_rank == 0:
self.summary_writer = SummaryWriter(
log_dir=str(args.experiment_dir)
)
else:
self.summary_writer = None
self.best_acc1 = 0.
self.current_epoch = 0
self.next_epoch = None
logger.info('Engine: n_crop=%d', self.n_crop)
self.checkpoint_manager = CheckpointManager(
self.args.experiment_dir, keep_interval=None
)
self.loss_meter = None
def has_next_epoch(self):
return not self.final_validate and self.current_epoch < self.num_epochs - 1
def load_checkpoint(self, checkpoint_path):
states = torch.load(checkpoint_path, map_location=self.device)
if states['arch'] != self.arch:
raise ValueError(f'Loading checkpoint arch {states["arch"]} does not match current arch {self.arch}')
logger.info('Loading checkpoint from %s', checkpoint_path)
self.model.module.load_state_dict(states['model'])
logger.info('Checkpoint loaded')
self.optimizer.load_state_dict(states['optimizer'])
self.scheduler.load_state_dict(states['scheduler'])
self.current_epoch = states['epoch']
self.best_acc1 = states['best_acc1']
def load_moco_checkpoint(self, checkpoint_path: str):
cp = torch.load(checkpoint_path, map_location=self.device)
if 'model' in cp and 'arch' in cp:
logger.info('Loading MoCo checkpoint from %s (epoch %d)', checkpoint_path, cp['epoch'])
moco_state = cp['model']
prefix = 'encoder_q.'
else:
# This checkpoint is from third-party
logger.info('Loading third-party model from %s', checkpoint_path)
if 'state_dict' in cp:
moco_state = cp['state_dict']
else:
# For c3d
moco_state = cp
logger.warning('if you are not using c3d sport1m, maybe you use wrong checkpoint')
if next(iter(moco_state.keys())).startswith('module'):
prefix = 'module.'
else:
prefix = ''
"""
fc -> fc. for c3d sport1m. Beacuse fc6 and fc7 is in use.
"""
blacklist = ['fc.', 'linear', 'head', 'new_fc', 'fc8']
blacklist += ['encoder_fuse']
def filter(k):
return k.startswith(prefix) and not any(k.startswith(f'{prefix}{fc}') for fc in blacklist)
model_state = {k[len(prefix):]: v for k, v in moco_state.items() if filter(k)}
msg = self.model.module.load_state_dict(model_state, strict=False)
# assert set(msg.missing_keys) == {"fc.weight", "fc.bias"} or \
# set(msg.missing_keys) == {"linear.weight", "linear.bias"} or \
# set(msg.missing_keys) == {'head.projection.weight', 'head.projection.bias'} or \
# set(msg.missing_keys) == {'new_fc.weight', 'new_fc.bias'},\
# msg
logger.warning(f'Missing keys: {msg.missing_keys}, Unexpected keys: {msg.unexpected_keys}')
def train_context(self):
return EpochContext(
self, name='Train',
n_crop=1,
dataloader=self.train_loader,
tensorboard_prefix='train')
def validate_context(self):
return EpochContext(
self, name='Validate',
n_crop=self.n_crop,
dataloader=self.validate_loader,
tensorboard_prefix='val')
def train_epoch(self):
epoch = self.next_epoch
if epoch is None:
epoch = self.train_context()
self.next_epoch = self.validate_context()
self.model.train()
with epoch:
for loss, *_ in epoch.forward():
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.loss_meter = epoch.loss_meter
def validate_epoch(self):
epoch = self.next_epoch
if epoch is None:
epoch = self.validate_context()
if self.has_next_epoch():
self.next_epoch = self.train_context()
else:
self.next_epoch = None
self.model.eval()
all_logits = torch.empty(0, device=next(self.model.parameters()).device)
indices = []
with epoch:
with torch.no_grad():
for _, logits, others in epoch.forward():
all_logits = torch.cat((all_logits, logits), dim=0)
if others:
assert len(others[0]) == logits.size(0), \
f'Length of indices and logits not match. {others[0]} vs {logits.size(0)}'
indices.extend(others[0])
epoch.sync_meters()
logger.info('Validation finished.\n\tLoss = %f\n\tAcc@1 = %.2f%% (%d/%d)\n\tAcc@5 = %.2f%% (%d/%d)',
epoch.loss_meter.avg.item(),
epoch.top1_meter.avg.item(), epoch.top1_meter.sum.item() / 100, epoch.top1_meter.count.item(),
epoch.top5_meter.avg.item(), epoch.top5_meter.sum.item() / 100, epoch.top5_meter.count.item(),
)
if self.final_validate:
ds = self.validate_loader.dataset
if hasattr(ds, 'save_results'):
assert indices, 'Dataset should return indices to sort logits'
assert len(indices) == all_logits.size(0), \
f'Length of indices and logits not match. {len(indices)} vs {all_logits.size(0)}'
with (self.args.experiment_dir / f'results_{self.local_rank}.json').open('w') as f:
ds.save_results(f, indices, all_logits)
return epoch.top1_meter.avg.item()
def run(self):
num_epochs = 1 if self.args.debug else self.num_epochs
self.model.train()
while self.current_epoch < num_epochs:
logger.info("Current LR:{}".format(self.scheduler._last_lr))
if self.summary_writer is not None:
self.summary_writer.add_scalar('train/lr', utils.get_lr(self.optimizer), self.current_epoch)
self.train_epoch()
acc1 = self.validate_epoch()
if self.schedule_type == "plateau":
self.scheduler.step(self.loss_meter.val.item())
else:
self.scheduler.step()
self.current_epoch += 1
if self.local_rank == 0:
is_best = acc1 > self.best_acc1
self.best_acc1 = max(acc1, self.best_acc1)
# save_checkpoint({
# 'epoch': self.current_epoch,
# 'arch': self.arch,
# 'model': self.model.module.state_dict(),
# 'best_acc1': self.best_acc1,
# 'optimizer': self.optimizer.state_dict(),
# 'scheduler': self.scheduler.state_dict(),
# }, is_best, self.args.experiment_dir)
self.checkpoint_manager.save(
{
'epoch': self.current_epoch,
'arch': self.arch,
'model': self.model.module.state_dict(),
'best_acc1': self.best_acc1,
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
},
is_best,
self.current_epoch
)
if self.summary_writer is not None:
self.summary_writer.flush()
def main_worker(local_rank: int, args: Args, dist_url: str):
print('Local Rank:', local_rank)
# log in main process only
if local_rank == 0:
set_logging_basic_config(args)
logger.info(f'Args = \n{args}')
if args.config is not None and args.experiment_dir is not None:
# Open multi-process. We only have one group, which is on the current node.
dist.init_process_group(
backend='nccl',
init_method=dist_url,
world_size=args.world_size,
rank=local_rank,
)
utils.reproduction.cudnn_benchmark()
cfg = get_config(args)
if local_rank == 0:
save_config(args, cfg)
args.save()
with torch.cuda.device(local_rank):
if not args.validate:
engine = Engine(args, cfg, local_rank=local_rank)
if args.load_checkpoint is not None:
engine.load_checkpoint(args.load_checkpoint)
elif args.moco_checkpoint is not None:
engine.load_moco_checkpoint(args.moco_checkpoint)
engine.run()
validate_checkpoint = args.experiment_dir / 'model_best.pth.tar'
else:
validate_checkpoint = args.load_checkpoint
if not validate_checkpoint:
raise ValueError('With "--validate" specified, you should also specify "--load-checkpoint"')
logger.info('Doing final validate.')
engine = Engine(args, cfg, local_rank=local_rank, final_validate=True)
engine.load_checkpoint(validate_checkpoint)
engine.validate_epoch()
if engine.summary_writer is not None:
engine.summary_writer.flush()
else:
logger.warning('No config. Do nothing.')
def main():
args = Args.from_args()
if args.seed is not None:
utils.reproduction.initialize_seed(args.seed)
# run in main process for preventing concurrency conflict
args.resolve_continue()
args.make_run_dir()
args.save()
pack_code(args.run_dir)
utils.environment.ulimit_n_max()
free_port = utils.distributed.find_free_port()
dist_url = f'tcp://127.0.0.1:{free_port}'
print(f'world_size={args.world_size} Using dist_url={dist_url}')
"""
We only consider single node here. 'world_size' is the number of processes.
"""
args.parser = None
mp.spawn(main_worker, args=(args, dist_url,), nprocs=args.world_size)
if __name__ == '__main__':
main()