forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
det_ct_loss.py
executable file
·276 lines (216 loc) · 9.15 KB
/
det_ct_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/shengtao96/CentripetalText/tree/main/models/loss
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
import numpy as np
def ohem_single(score, gt_text, training_mask):
# online hard example mining
pos_num = int(paddle.sum(gt_text > 0.5)) - int(
paddle.sum((gt_text > 0.5) & (training_mask <= 0.5)))
if pos_num == 0:
# selected_mask = gt_text.copy() * 0 # may be not good
selected_mask = training_mask
selected_mask = paddle.cast(
selected_mask.reshape(
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32")
return selected_mask
neg_num = int(paddle.sum((gt_text <= 0.5) & (training_mask > 0.5)))
neg_num = int(min(pos_num * 3, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = paddle.cast(
selected_mask.reshape(
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32")
return selected_mask
# hard example
neg_score = score[(gt_text <= 0.5) & (training_mask > 0.5)]
neg_score_sorted = paddle.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
selected_mask = ((score >= threshold) |
(gt_text > 0.5)) & (training_mask > 0.5)
selected_mask = paddle.cast(
selected_mask.reshape(
(1, selected_mask.shape[0], selected_mask.shape[1])), "float32")
return selected_mask
def ohem_batch(scores, gt_texts, training_masks):
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(
ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[
i, :, :]))
selected_masks = paddle.cast(paddle.concat(selected_masks, 0), "float32")
return selected_masks
def iou_single(a, b, mask, n_class):
EPS = 1e-6
valid = mask == 1
a = a[valid]
b = b[valid]
miou = []
# iou of each class
for i in range(n_class):
inter = paddle.cast(((a == i) & (b == i)), "float32")
union = paddle.cast(((a == i) | (b == i)), "float32")
miou.append(paddle.sum(inter) / (paddle.sum(union) + EPS))
miou = sum(miou) / len(miou)
return miou
def iou(a, b, mask, n_class=2, reduce=True):
batch_size = a.shape[0]
a = a.reshape((batch_size, -1))
b = b.reshape((batch_size, -1))
mask = mask.reshape((batch_size, -1))
iou = paddle.zeros((batch_size, ), dtype="float32")
for i in range(batch_size):
iou[i] = iou_single(a[i], b[i], mask[i], n_class)
if reduce:
iou = paddle.mean(iou)
return iou
class DiceLoss(nn.Layer):
def __init__(self, loss_weight=1.0):
super(DiceLoss, self).__init__()
self.loss_weight = loss_weight
def forward(self, input, target, mask, reduce=True):
batch_size = input.shape[0]
input = F.sigmoid(input) # scale to 0-1
input = input.reshape((batch_size, -1))
target = paddle.cast(target.reshape((batch_size, -1)), "float32")
mask = paddle.cast(mask.reshape((batch_size, -1)), "float32")
input = input * mask
target = target * mask
a = paddle.sum(input * target, axis=1)
b = paddle.sum(input * input, axis=1) + 0.001
c = paddle.sum(target * target, axis=1) + 0.001
d = (2 * a) / (b + c)
loss = 1 - d
loss = self.loss_weight * loss
if reduce:
loss = paddle.mean(loss)
return loss
class SmoothL1Loss(nn.Layer):
def __init__(self, beta=1.0, loss_weight=1.0):
super(SmoothL1Loss, self).__init__()
self.beta = beta
self.loss_weight = loss_weight
np_coord = np.zeros(shape=[640, 640, 2], dtype=np.int64)
for i in range(640):
for j in range(640):
np_coord[i, j, 0] = j
np_coord[i, j, 1] = i
np_coord = np_coord.reshape((-1, 2))
self.coord = self.create_parameter(
shape=[640 * 640, 2],
dtype="int32", # NOTE: not support "int64" before paddle 2.3.1
default_initializer=nn.initializer.Assign(value=np_coord))
self.coord.stop_gradient = True
def forward_single(self, input, target, mask, beta=1.0, eps=1e-6):
batch_size = input.shape[0]
diff = paddle.abs(input - target) * mask.unsqueeze(1)
loss = paddle.where(diff < beta, 0.5 * diff * diff / beta,
diff - 0.5 * beta)
loss = paddle.cast(loss.reshape((batch_size, -1)), "float32")
mask = paddle.cast(mask.reshape((batch_size, -1)), "float32")
loss = paddle.sum(loss, axis=-1)
loss = loss / (mask.sum(axis=-1) + eps)
return loss
def select_single(self, distance, gt_instance, gt_kernel_instance,
training_mask):
with paddle.no_grad():
# paddle 2.3.1, paddle.slice not support:
# distance[:, self.coord[:, 1], self.coord[:, 0]]
select_distance_list = []
for i in range(2):
tmp1 = distance[i, :]
tmp2 = tmp1[self.coord[:, 1], self.coord[:, 0]]
select_distance_list.append(tmp2.unsqueeze(0))
select_distance = paddle.concat(select_distance_list, axis=0)
off_points = paddle.cast(
self.coord, "float32") + 10 * select_distance.transpose((1, 0))
off_points = paddle.cast(off_points, "int64")
off_points = paddle.clip(off_points, 0, distance.shape[-1] - 1)
selected_mask = (
gt_instance[self.coord[:, 1], self.coord[:, 0]] !=
gt_kernel_instance[off_points[:, 1], off_points[:, 0]])
selected_mask = paddle.cast(
selected_mask.reshape((1, -1, distance.shape[-1])), "int64")
selected_training_mask = selected_mask * training_mask
return selected_training_mask
def forward(self,
distances,
gt_instances,
gt_kernel_instances,
training_masks,
gt_distances,
reduce=True):
selected_training_masks = []
for i in range(distances.shape[0]):
selected_training_masks.append(
self.select_single(distances[i, :, :, :], gt_instances[i, :, :],
gt_kernel_instances[i, :, :], training_masks[
i, :, :]))
selected_training_masks = paddle.cast(
paddle.concat(selected_training_masks, 0), "float32")
loss = self.forward_single(distances, gt_distances,
selected_training_masks, self.beta)
loss = self.loss_weight * loss
with paddle.no_grad():
batch_size = distances.shape[0]
false_num = selected_training_masks.reshape((batch_size, -1))
false_num = false_num.sum(axis=-1)
total_num = paddle.cast(
training_masks.reshape((batch_size, -1)), "float32")
total_num = total_num.sum(axis=-1)
iou_text = (total_num - false_num) / (total_num + 1e-6)
if reduce:
loss = paddle.mean(loss)
return loss, iou_text
class CTLoss(nn.Layer):
def __init__(self):
super(CTLoss, self).__init__()
self.kernel_loss = DiceLoss()
self.loc_loss = SmoothL1Loss(beta=0.1, loss_weight=0.05)
def forward(self, preds, batch):
imgs = batch[0]
out = preds['maps']
gt_kernels, training_masks, gt_instances, gt_kernel_instances, training_mask_distances, gt_distances = batch[
1:]
kernels = out[:, 0, :, :]
distances = out[:, 1:, :, :]
# kernel loss
selected_masks = ohem_batch(kernels, gt_kernels, training_masks)
loss_kernel = self.kernel_loss(
kernels, gt_kernels, selected_masks, reduce=False)
iou_kernel = iou(paddle.cast((kernels > 0), "int64"),
gt_kernels,
training_masks,
reduce=False)
losses = dict(loss_kernels=loss_kernel, )
# loc loss
loss_loc, iou_text = self.loc_loss(
distances,
gt_instances,
gt_kernel_instances,
training_mask_distances,
gt_distances,
reduce=False)
losses.update(dict(loss_loc=loss_loc, ))
loss_all = loss_kernel + loss_loc
losses = {'loss': loss_all}
return losses