English | 简体中文
Test Environment:
- GPU: V100 32G
- CPU: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
- CUDA: 10.1
- cuDNN: 7.6
- TensorRT: 6.0.1.5
- Paddle: 2.1.1
The method of test segmentation model on GPU:
- Use all of the data in Cityscapes dataset to test(1024 * 2048).
- Use single GPU and set batchsize to 1.
- The time only includes model inference.
- Use the Python API of Paddle Inference to test. You can choose whether to use TRT wirh use_trt parameter and use precision to set the inference datatype.
Inference with GPU Benchmark:
Model | With TRT | infer datatype | mIoU | time(s/img) |
---|---|---|---|---|
ANN_ResNet50_OS8 | N | FP32 | 0.7909 | 0.274 |
ANN_ResNet50_OS8 | Y | FP32 | 0.7909 | 0.281 |
ANN_ResNet50_OS8 | Y | FP16 | 0.7909 | 0.168 |
ANN_ResNet50_OS8 | Y | INT8 | 0.7906 | 0.195 |
DANet_ResNet50_OS8 | N | FP32 | 0.8027 | 0.371 |
DANet_ResNet50_OS8 | Y | FP32 | 0.8027 | 0.330 |
DANet_ResNet50_OS8 | Y | FP16 | 0.8027 | 0.183 |
DANet_ResNet50_OS8 | Y | INT8 | 0.8039 | 0.266 |
DeepLabV3P_ResNet50_OS8 | N | FP32 | 0.8036 | 0.165 |
DeepLabV3P_ResNet50_OS8 | Y | FP32 | 0.8036 | 0.206 |
DeepLabV3P_ResNet50_OS8 | Y | FP16 | 0.8036 | 0.196 |
DeepLabV3P_ResNet50_OS8 | Y | INT8 | 0.8044 | 0.083 |
DNLNet_ResNet50_OS8 | N | FP32 | 0.7995 | 0.381 |
DNLNet_ResNet50_OS8 | Y | FP32 | 0.7995 | 0.360 |
DNLNet_ResNet50_OS8 | Y | FP16 | 0.7995 | 0.230 |
DNLNet_ResNet50_OS8 | Y | INT8 | 0.7989 | 0.236 |
EMANet_ResNet50_OS8 | N | FP32 | 0.7905 | 0.208 |
EMANet_ResNet50_OS8 | Y | FP32 | 0.7905 | 0.186 |
EMANet_ResNet50_OS8 | Y | FP16 | 0.7904 | 0.062 |
EMANet_ResNet50_OS8 | Y | INT8 | 0.7939 | 0.106 |
GCNet_ResNet50_OS8 | N | FP32 | 0.7950 | 0.247 |
GCNet_ResNet50_OS8 | Y | FP32 | 0.7950 | 0.228 |
GCNet_ResNet50_OS8 | Y | FP16 | 0.7950 | 0.100 |
GCNet_ResNet50_OS8 | Y | INT8 | 0.7959 | 0.144 |
PSPNet_ResNet50_OS8 | N | FP32 | 0.7883 | 0.327 |
PSPNet_ResNet50_OS8 | Y | FP32 | 0.7883 | 0.324 |
PSPNet_ResNet50_OS8 | Y | FP16 | 0.7883 | 0.218 |
PSPNet_ResNet50_OS8 | Y | INT8 | 0.7915 | 0.223 |
UNet | N | FP32 | 0.6500 | 0.071 |
UNet | Y | FP32 | 0.6500 | 0.099 |
UNet | Y | FP16 | 0.6500 | 0.099 |
UNet | Y | INT8 | 0.6503 | 0.099 |