Skip to content

Latest commit

 

History

History
 
 

ppyoloe

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English | 简体中文

PP-YOLOE

Latest News

  • Release PP-YOLOE+ model: (2022.08)
    • Pre training model using large-scale data set obj365
    • In the backbone, add the alpha parameter to the block branch
    • Optimize the end-to-end inference speed and improve the training convergence speed

Legacy model

Table of Contents

Introduction

PP-YOLOE is an excellent single-stage anchor-free model based on PP-YOLOv2, surpassing a variety of popular YOLO models. PP-YOLOE has a series of models, named s/m/l/x, which are configured through width multiplier and depth multiplier. PP-YOLOE avoids using special operators, such as Deformable Convolution or Matrix NMS, to be deployed friendly on various hardware. For more details, please refer to our report.

PP-YOLOE+_l achieves 53.3 mAP on COCO test-dev2017 dataset with 78.1 FPS on Tesla V100. While using TensorRT FP16, PP-YOLOE+_l can be further accelerated to 149.2 FPS. PP-YOLOE+_s/m/x also have excellent accuracy and speed performance, which can be found in Model Zoo

PP-YOLOE is composed of following methods:

Model Zoo

Model Zoo on COCO

Model Epoch GPU number images/GPU backbone input shape Box APval
0.5:0.95
Box APtest
0.5:0.95
Params(M) FLOPs(G) V100 FP32(FPS) V100 TensorRT FP16(FPS) download config
PP-YOLOE+_s 80 8 8 cspresnet-s 640 43.7 43.9 7.93 17.36 208.3 333.3 model config
PP-YOLOE+_m 80 8 8 cspresnet-m 640 49.8 50.0 23.43 49.91 123.4 208.3 model config
PP-YOLOE+_m(distill) 80 8 8 cspresnet-m 640 51.0 51.2 23.43 49.91 123.4 208.3 model config
PP-YOLOE+_l 80 8 8 cspresnet-l 640 52.9 53.3 52.20 110.07 78.1 149.2 model config
PP-YOLOE+_l(distill) 80 8 8 cspresnet-l 640 54.0 54.4 52.20 110.07 78.1 149.2 model config
PP-YOLOE+_x 80 8 8 cspresnet-x 640 54.7 54.9 98.42 206.59 45.0 95.2 model config

Note:

  • M and L models use distillation, please refer to distill for details.

Tiny model

Model Epoch GPU number images/GPU backbone input shape Box APval
0.5:0.95
Box APtest
0.5:0.95
Params(M) FLOPs(G) T4 TensorRT FP16(FPS) download config
PP-YOLOE+_t-aux(640) 300 8 8 cspresnet-t 640 39.9 56.6 4.85 19.15 344.8 model config
PP-YOLOE+_t-aux(640)-relu 300 8 8 cspresnet-t 640 36.4 53.0 3.60 12.17 476.2 model config
PP-YOLOE+_t-aux(320) 300 8 8 cspresnet-t 320 33.3 48.5 4.85 4.80 729.9 model config
PP-YOLOE+_t-aux(320)-relu 300 8 8 cspresnet-t 320 30.1 44.7 3.60 3.04 984.8 model config

Comprehensive Metrics

Model Epoch AP0.5:0.95 AP0.5 AP0.75 APsmall APmedium APlarge ARsmall ARmedium ARlarge
PP-YOLOE+_s 80 43.7 60.6 47.9 26.5 47.5 59.0 46.7 71.4 81.7
PP-YOLOE+_m 80 49.8 67.1 54.5 31.8 53.9 66.2 53.3 75.0 84.6
PP-YOLOE+_m(distill) 80 51.0 68.1 55.8 32.5 55.7 67.4 51.9 76.1 86.4
PP-YOLOE+_l 80 52.9 70.1 57.9 35.2 57.5 69.1 56.0 77.9 86.9
PP-YOLOE+_l(distill) 80 54.0 71.2 59.2 36.1 58.8 70.4 55.0 78.7 87.7
PP-YOLOE+_x 80 54.7 72.0 59.9 37.9 59.3 70.4 57.0 78.7 87.2

Note:

  • M and L models use distillation, please refer to distill for details.

End-to-end Speed

Model AP0.5:0.95 TRT-FP32(fps) TRT-FP16(fps)
PP-YOLOE+_s 43.7 44.44 47.85
PP-YOLOE+_m 49.8 39.06 43.86
PP-YOLOE+_l 52.9 34.01 42.02
PP-YOLOE+_x 54.7 26.88 36.76

Notes:

  • PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset.
  • The model weights in the table of Comprehensive Metrics are the same as that in the original Model Zoo, and evaluated on val2017.
  • PP-YOLOE used 8 GPUs for mixed precision training, if GPU number or mini-batch size is changed, learning rate should be adjusted according to the formula lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault).
  • PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.6.5, TensorRT 6.0.1.8 in TensorRT mode.
  • Refer to Speed testing to reproduce the speed testing results of PP-YOLOE.
  • If you set --run_benchmark=True,you should install these dependencies at first, pip install pynvml psutil GPUtil.
  • End-to-end speed test includes pre-processing + inference + post-processing and NMS time, using Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz, single Tesla V100, CUDA 11.2, CUDNN 8.2.0, TensorRT 8.0.1.6.

Model Zoo on Objects365

Model Epoch Machine number GPU number images/GPU backbone input shape Box AP0.5 Params(M) FLOPs(G) V100 FP32(FPS) V100 TensorRT FP16(FPS) download config
PP-YOLOE+_s 60 3 8 8 cspresnet-s 640 18.1 7.93 17.36 208.3 333.3 model config
PP-YOLOE+_m 60 4 8 8 cspresnet-m 640 25.0 23.43 49.91 123.4 208.3 model config
PP-YOLOE+_l 60 3 8 8 cspresnet-l 640 30.8 52.20 110.07 78.1 149.2 model config
PP-YOLOE+_x 60 4 8 8 cspresnet-x 640 32.7 98.42 206.59 45.0 95.2 model config

Notes:

  • The Details for multiple machine and multi-gpu training, see DistributedTraining
  • For Objects365 dataset download, please refer to objects365 official website. The specific category list can be downloaded from objects365_detection_label_list.txt organized by PaddleDetection team. It should be stored in dataset/objects365/, and each line represents one category. The categories need to be read when exporting the model or doing inference. If the json file is not exist, you can make the following changes to configs/datasets/objects365_detection.yml:
TestDataset:
  !ImageFolder
    # anno_path: annotations/zhiyuan_objv2_val.json
    anno_path: objects365_detection_label_list.txt
    dataset_dir: dataset/objects365/

Model Zoo on VOC

Model Epoch GPU number images/GPU backbone input shape Box AP0.5 Params(M) FLOPs(G) V100 FP32(FPS) V100 TensorRT FP16(FPS) download config
PP-YOLOE+_s 30 8 8 cspresnet-s 640 86.7 7.93 17.36 208.3 333.3 model config
PP-YOLOE+_l 30 8 8 cspresnet-l 640 89.0 52.20 110.07 78.1 149.2 model config

Feature Models

The PaddleDetection team provides configs and weights of various feature detection models based on PP-YOLOE, which users can download for use:

Scenarios Related Datasets Links
Pedestrian Detection CrowdHuman pphuman
Vehicle Detection BDD100K, UA-DETRAC ppvehicle
Small Object Detection VisDrone、DOTA、xView smalldet
Densely Packed Object Detection SKU110k application
Rotated Object Detection DOTA PP-YOLOE-R

Getting Start

Datasets and Metrics

PaddleDetection team provides COCO and VOC dataset , decompress and place it under PaddleDetection/dataset/:

wget https://bj.bcebos.com/v1/paddledet/data/coco.tar
# tar -xvf coco.tar

wget https://bj.bcebos.com/v1/paddledet/data/voc.zip
# unzip voc.zip

Note:

Custom dataset

1.For the annotation of custom dataset, please refer to DetAnnoTools;

2.For training preparation of custom dataset,please refer to PrepareDataSet.

Training

Training PP-YOLOE+ on 8 GPUs with following command

python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml --eval --amp

Notes:

  • If you need to evaluate while training, please add --eval.
  • PP-YOLOE+ supports mixed precision training, please add --amp.
  • PaddleDetection supports multi-machine distributed training, you can refer to DistributedTraining tutorial.

Evaluation

Evaluating PP-YOLOE+ on COCO val2017 dataset in single GPU with following commands:

CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams

For evaluation on COCO test-dev2017 dataset, please download COCO test-dev2017 dataset from COCO dataset download and decompress to COCO dataset directory and configure EvalDataset like configs/ppyolo/ppyolo_test.yml.

Inference

Inference images in single GPU with following commands, use --infer_img to inference a single image and --infer_dir to inference all images in the directory.

# inference single image
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams --infer_img=demo/000000014439_640x640.jpg

# inference all images in the directory
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams --infer_dir=demo

Exporting models

For deployment on GPU or speed testing, model should be first exported to inference model using tools/export_model.py.

Exporting PP-YOLOE+ for Paddle Inference without TensorRT, use following command

python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams

Exporting PP-YOLOE+ for Paddle Inference with TensorRT for better performance, use following command with extra -o trt=True setting.

python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams trt=True

If you want to export PP-YOLOE model to ONNX format, use following command refer to PaddleDetection Model Export as ONNX Format Tutorial.

# export inference model
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml --output_dir=output_inference -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams trt=True

# install paddle2onnx
pip install paddle2onnx

# convert to onnx
paddle2onnx --model_dir output_inference/ppyoloe_plus_crn_l_80e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file ppyoloe_plus_crn_l_80e_coco.onnx

Notes: ONNX model only supports batch_size=1 now

Speed testing

For fair comparison, the speed in Model Zoo do not contains the time cost of data reading and post-processing(NMS), which is same as YOLOv4(AlexyAB) in testing method. Thus, you should export model with extra -o exclude_nms=True setting.

Using Paddle Inference without TensorRT to test speed, run following command

# export inference model
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams exclude_nms=True

# speed testing with run_benchmark=True
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_crn_l_80e_coco --image_file=demo/000000014439_640x640.jpg --run_mode=paddle --device=gpu --run_benchmark=True

Using Paddle Inference with TensorRT to test speed, run following command

# export inference model with trt=True
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams exclude_nms=True trt=True

# speed testing with run_benchmark=True,run_mode=trt_fp32/trt_fp16
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_crn_l_80e_coco --image_file=demo/000000014439_640x640.jpg --run_mode=trt_fp16 --device=gpu --run_benchmark=True

Using TensorRT Inference with ONNX to test speed, run following command

# export inference model with trt=True
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams exclude_nms=True trt=True

# convert to onnx
paddle2onnx --model_dir output_inference/ppyoloe_plus_crn_s_80e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_crn_s_80e_coco.onnx

# trt inference using fp16 and batch_size=1
trtexec --onnx=./ppyoloe_plus_crn_s_80e_coco.onnx --saveEngine=./ppyoloe_s_bs1.engine --workspace=1024 --avgRuns=1000 --shapes=image:1x3x640x640,scale_factor:1x2 --fp16

# trt inference using fp16 and batch_size=32
trtexec --onnx=./ppyoloe_plus_crn_s_80e_coco.onnx --saveEngine=./ppyoloe_s_bs32.engine --workspace=1024 --avgRuns=1000 --shapes=image:32x3x640x640,scale_factor:32x2 --fp16

# Using the above script, T4 and tensorrt 7.2 machine, the speed of PPYOLOE-s model is as follows,

# batch_size=1, 2.80ms, 357fps
# batch_size=32, 67.69ms, 472fps

Deployment

PP-YOLOE can be deployed by following approaches:

Next, we will introduce how to use Paddle Inference to deploy PP-YOLOE models in TensorRT FP16 mode.

First, refer to Paddle Inference Docs, download and install packages corresponding to CUDA, CUDNN and TensorRT version.

Then, Exporting PP-YOLOE for Paddle Inference with TensorRT, use following command.

python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams trt=True

Finally, inference in TensorRT FP16 mode.

# inference single image
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_crn_l_80e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu --run_mode=trt_fp16

# inference all images in the directory
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_crn_l_80e_coco --image_dir=demo/ --device=gpu  --run_mode=trt_fp16

Notes:

  • TensorRT will perform optimization for the current hardware platform according to the definition of the network, generate an inference engine and serialize it into a file. This inference engine is only applicable to the current hardware hardware platform. If your hardware and software platform has not changed, you can set use_static=True in enable_tensorrt_engine. In this way, the serialized file generated will be saved in the output_inference folder, and the saved serialized file will be loaded the next time when TensorRT is executed.
  • PaddleDetection release/2.4 and later versions will support NMS calling TensorRT, which requires PaddlePaddle release/2.3 and later versions.

Other Datasets

Model AP AP50
YOLOX 22.6 37.5
YOLOv5 26.0 42.7
PP-YOLOE 30.5 46.4

Notes

  • Here, we use VisDrone dataset, and to detect 9 objects including person, bicycles, car, van, truck, tricycle, awning-tricycle, bus, motor.
  • Above models trained using official default config, and load pretrained parameters on COCO dataset.
  • Due to the limited time, more verification results will be supplemented in the future. You are also welcome to contribute to PP-YOLOE

Appendix

Ablation experiments of PP-YOLOE.

NO. Model Box APval Params(M) FLOPs(G) V100 FP32 FPS
A PP-YOLOv2 49.1 54.58 115.77 68.9
B A + Anchor-free 48.8 54.27 114.78 69.8
C B + CSPRepResNet 49.5 47.42 101.87 85.5
D C + TAL 50.4 48.32 104.75 84.0
E D + ET-Head 50.9 52.20 110.07 78.1