-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathPreProcessingModule.py
224 lines (195 loc) · 9.39 KB
/
PreProcessingModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from PIL import Image, ImageEnhance, ImageOps
import numpy as np
import Constants
import os
import cv2
##############################################################################
#Returns a list of file names for the images
##############################################################################
def get_unprocessed_image_files():
#Stores all of the big images in this list
image_file_list = None
#Retrieve image paths
for root, dirs, files in os.walk(Constants.IMAGE_FILE_LOCATION):
image_file_list = files
return image_file_list
#############################################################################
#Erosion followed by dilation to remove/reduce noise in an image
#############################################################################
def cv_opening(img, kernel) :
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
return opening
#############################################################################
#Cleans the image by plugging holes and removing noise
#############################################################################
#Cleans the image and combines spaces on the image
def clean_image(img, kernel) :
img = cv_opening(img, kernel)
#Dilate the image in order to fill in empty spots
dilation_kernel = np.ones((5,5), np.uint8)
img = cv2.dilate(img, dilation_kernel, iterations = 2)
#Attempt to return the objects to their normal sizes
erosion_kernel = np.ones((3,3), np.uint8)
img = cv2.erode(img, erosion_kernel, iterations = 1)
return img
##############################################################################
#Return a list of preprocessed image files where each image is greyscaled
#the contrast is increased by a large margin to reduce the number of
#color variation
#############################################################################
def get_pr_images(max_images = 1,greyscale=None, greyscale_threshhold = 80):
#Retrieve image file list
image_file_list = get_unprocessed_image_files()
#Place to store the Image objects
image_list = []
#Create a kernel to move through the image
kernel = np.ones((3,3), np.uint8)
#Counter to see how many images we are working on and break once we reach image_count
counter = 0
#Iterate through each file name and turn them into Image objects
#then, preprocess them before appending it to the list
for i in range(max_images):
file_name = image_file_list[i]
image = None
if greyscale != None:
#The Image object obtained from the file in greyscale mode
image = cv2.imread(Constants.IMAGE_FILE_LOCATION + file_name, cv2.IMREAD_GRAYSCALE)
#Check if the Image should be a binary grey scale with only 0 and 255 values
if greyscale == 'binary':
image[image < greyscale_threshhold] = 0
image[image > greyscale_threshhold] = 255
else :
#The Image object obtained from the file in normal mode
image = cv2.imread(Constants.IMAGE_FILE_LOCATION + file_name, cv2.IMREAD_UNCHANGED)
#Clean the image
image = clean_image(image, kernel)
#Append the object onto the list
image_list.append(image)
#Break if we pre-processed enough images
if counter == max_images:
break
#Return the list of Image objects
return image_list
def get_upr_images(max_images = 1) :
#Retrieve image file list
image_file_list = get_unprocessed_image_files()
#Stores the image objects
image_list = []
for i in range(max_images):
file_name = image_file_list[i]
#Instantiate the image
image = cv2.imread(Constants.IMAGE_FILE_LOCATION + file_name, cv2.IMREAD_UNCHANGED)
#Add the image to the file list
image_list.append(image)
return image_list
##############################################################################
#Creates a binary matrix of 0 and 1 values
#############################################################################
def normalize_image(image, reverse = False) :
if reverse == False:
image = image / 255
else:
image = image * 255
return image
##############################################################################
#Displays an image until the user presses a key
#############################################################################
def display_image(image):
#Create a window object
cv2.namedWindow("image_window", cv2.WINDOW_NORMAL)
#Show the image within that window
cv2.imshow("image_window", image)
#Makes the window show the image until the user presses a value
cv2.waitKey()
#User has pressed a value
cv2.destroyAllWindows()
##############################################################################
#Saves an image inside of the object detection test folder
#############################################################################
def saveImage(image, file_name = "test.png"):
cv2.imwrite(Constants.PR_SAVE_LOCATION + file_name, image)
##############################################################################
#Creates a bounding box in the given image depending on the top left coordinates
#############################################################################
def create_bbox(image, bbox_locations, box_thickness = 3):
for x, y, width, height in bbox_locations:
cv2.rectangle(image, (x,y), (x+width, y+height), (255, 255, 255), box_thickness)
return image
##############################################################################
#Scales the bounding boxes
#############################################################################
def scale_bbox(image_width, image_height, bbox_locations, MAX_IMAGE_HEIGHT = 80, MAX_IMAGE_WIDTH = 80):
new_bbox_locations = list()
for x, y, width, height in bbox_locations:
#Get the center of the image width wise
horizontal_center = (2 * x + width) // 2
#Get the center of the image height wise
vertical_center = (2 * y + height) // 2
if (width < MAX_IMAGE_WIDTH and height < MAX_IMAGE_HEIGHT) :
x = horizontal_center - (MAX_IMAGE_WIDTH // 2)
y = vertical_center - (MAX_IMAGE_HEIGHT // 2)
#Check if the width wise boundary boxes go beyond the boundary
if(x < 0) :
#If the image goes behind the boundary, just set it as the boundary
x = 0
elif(x + MAX_IMAGE_WIDTH > image_width) :
#If the image goes beyond the boundary, just set it as the boundary - MAX_IMAGE_WIDTH
x = image_width - MAX_IMAGE_WIDTH
#Check if the height wise boundary boxes go beyong the boundary
if(y < 0) :
#If the image goes behind the boundary
y = 0
elif(y + MAX_IMAGE_HEIGHT > image_height) :
#If the image goes beyong the boundary, just set it as the boundary - MAX_IMAGE_HEIGHT
y = image_height - MAX_IMAGE_HEIGHT
#Set the new size of the images
width = MAX_IMAGE_WIDTH
height = MAX_IMAGE_HEIGHT
else:
#Here, either one side is greater than MAX, create a square to keep spatial details
if(height > width):
#Make the Width the same size as the height
x = horizontal_center - (height // 2)
if(x < 0):
#If the image goes behind the boundary, set it as the boundary
x = 0
elif(x + height > image_width):
#If the image goes beyond the boundary, set it as the boundary - height
x = image_width - height
width = height
elif(width > height):
#Make the height the same size as the width
y = vertical_center - (width // 2)
if(y < 0):
#If the image goes behind the boundaryu, set it as the boundary
y = 0
elif(y + width > image_height):
#If the image goes beyond the boundary, set is as the boundary - width
y = image_height - width
height = width
#Store the newly created bounding box
new_bbox_locations.append((x,y,width,height))
return new_bbox_locations
##############################################################################
#Crop images from the original image
#############################################################################
def crop(image, bbox_set, set_width = 80, set_height = 80) :
images = list()
#Iteratively crop the images and put them into a list
for x, y, width, height in bbox_set:
cropped_image = image[y: y+ height, x: x+width]
resized_image = cv2.resize(cropped_image, (set_width, set_height), interpolation = cv2.INTER_CUBIC)
images.append(resized_image)
return images
##############################################################################
#Reshapes all images to the specified shape
#############################################################################
def reshape_data(data, new_shape):
new_data = []
#Iteratively crop the images and put them into a list
for i in range(len(data)):
img = data[i]
img = img.astype("uint8")
resized_image = cv2.resize(img, new_shape, interpolation = cv2.INTER_CUBIC)
new_data.append(resized_image)
return new_data