-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathbenchmark.py
192 lines (165 loc) · 7.18 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import math
import os
import random
from argparse import ArgumentParser
from collections import namedtuple
from concurrent.futures import ProcessPoolExecutor
from typing import *
import editdistance
from dataset import *
from engine import *
from languages import Languages
from normalizer import EnglishNormalizer
WorkerResult = namedtuple(
"WorkerResult", ["num_errors", "num_words", "audio_sec", "process_sec"]
)
RESULTS_FOLDER = os.path.join(os.path.dirname(__file__), "results")
def process(
engine: Engines,
engine_params: Dict[str, Any],
language: Languages,
dataset: Datasets,
dataset_folder: str,
indices: Sequence[int],
) -> WorkerResult:
engine = Engine.create(engine, language=language, **engine_params)
dataset = Dataset.create(dataset, folder=dataset_folder, language=language)
error_count = 0
word_count = 0
for index in indices:
audio_path, ref_transcript = dataset.get(index)
transcript = engine.transcribe(audio_path)
ref_sentence = ref_transcript.strip("\n ").lower()
transcribed_sentence = transcript.strip("\n ").lower()
if language == Languages.EN:
ref_words = EnglishNormalizer.to_american(
EnglishNormalizer.normalize_abbreviations(ref_sentence)
).split()
transcribed_words = EnglishNormalizer.to_american(
EnglishNormalizer.normalize_abbreviations(transcribed_sentence)
).split()
else:
ref_words = ref_sentence.split()
transcribed_words = transcribed_sentence.split()
error_count += editdistance.eval(ref_words, transcribed_words)
word_count += len(ref_words)
engine.delete()
return WorkerResult(
num_errors=error_count,
num_words=word_count,
audio_sec=engine.audio_sec(),
process_sec=engine.process_sec(),
)
def main():
parser = ArgumentParser()
parser.add_argument("--engine", required=True, choices=[x.value for x in Engines])
parser.add_argument("--dataset", required=True, choices=[x.value for x in Datasets])
parser.add_argument("--dataset-folder", required=True)
parser.add_argument(
"--language", required=True, choices=[x.value for x in Languages]
)
parser.add_argument("--aws-profile")
parser.add_argument("--azure-speech-key")
parser.add_argument("--azure-speech-location")
parser.add_argument("--google-application-credentials")
parser.add_argument("--deepspeech-pbmm")
parser.add_argument("--deepspeech-scorer")
parser.add_argument("--picovoice-access-key")
parser.add_argument("--picovoice-model-path", default=None)
parser.add_argument("--picovoice-library-path", default=None)
parser.add_argument("--watson-speech-to-text-api-key")
parser.add_argument("--watson-speech-to-text-url")
parser.add_argument("--num-examples", type=int, default=None)
parser.add_argument("--num-workers", type=int, default=os.cpu_count())
args = parser.parse_args()
engine = Engines(args.engine)
dataset_type = Datasets(args.dataset)
language = Languages(args.language)
dataset_folder = args.dataset_folder
num_examples = args.num_examples
num_workers = args.num_workers
engine_params = dict()
if engine == Engines.AMAZON_TRANSCRIBE:
if args.aws_profile is None:
raise ValueError("`aws-profile` is required")
os.environ["AWS_PROFILE"] = args.aws_profile
elif engine == Engines.AZURE_SPEECH_TO_TEXT:
if args.azure_speech_key is None or args.azure_speech_location is None:
raise ValueError(
"`azure-speech-key` and `azure-speech-location` are required"
)
engine_params["azure_speech_key"] = args.azure_speech_key
engine_params["azure_speech_location"] = args.azure_speech_location
elif (
engine == Engines.GOOGLE_SPEECH_TO_TEXT
or engine == Engines.GOOGLE_SPEECH_TO_TEXT_ENHANCED
):
if args.google_application_credentials is None:
raise ValueError("`google-application-credentials` is required")
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = (
args.google_application_credentials
)
elif engine == Engines.PICOVOICE_CHEETAH:
if args.picovoice_access_key is None:
raise ValueError("`picovoice-access-key` is required")
if args.picovoice_model_path is None and args.language != Languages.EN:
raise ValueError("`picovoice-model-path` is required for non-EN languages")
engine_params["access_key"] = args.picovoice_access_key
engine_params["model_path"] = args.picovoice_model_path
engine_params["library_path"] = args.picovoice_library_path
elif engine == Engines.PICOVOICE_LEOPARD:
if args.picovoice_access_key is None:
raise ValueError("`picovoice-access-key` is required")
if args.picovoice_model_path is None and args.language != Languages.EN:
raise ValueError("`picovoice-model-path` is required for non-EN languages")
engine_params["access_key"] = args.picovoice_access_key
engine_params["model_path"] = args.picovoice_model_path
engine_params["library_path"] = args.picovoice_library_path
elif engine == Engines.IBM_WATSON_SPEECH_TO_TEXT:
if (
args.watson_speech_to_text_api_key is None
or args.watson_speech_to_text_url is None
):
raise ValueError(
"`watson-speech-to-text-api-key` and `watson-speech-to-text-url` are required"
)
engine_params["watson_speech_to_text_api_key"] = (
args.watson_speech_to_text_api_key
)
engine_params["watson_speech_to_text_url"] = args.watson_speech_to_text_url
dataset = Dataset.create(dataset_type, folder=dataset_folder, language=language)
indices = list(range(dataset.size()))
random.shuffle(indices)
if args.num_examples is not None:
indices = indices[:num_examples]
chunk = math.ceil(len(indices) / num_workers)
print(f"Processing {len(indices)} examples...")
futures = []
with ProcessPoolExecutor(num_workers) as executor:
for i in range(num_workers):
future = executor.submit(
process,
engine=engine,
engine_params=engine_params,
language=language,
dataset=dataset_type,
dataset_folder=dataset_folder,
indices=indices[i * chunk : (i + 1) * chunk],
)
futures.append(future)
res = [x.result() for x in futures]
num_errors = sum(x.num_errors for x in res)
num_words = sum(x.num_words for x in res)
rtf = sum(x.process_sec for x in res) / sum(x.audio_sec for x in res)
word_error_rate = 100 * float(num_errors) / num_words
results_log_path = os.path.join(
RESULTS_FOLDER, language.value, dataset_type.value, f"{str(engine)}.log"
)
os.makedirs(os.path.dirname(results_log_path), exist_ok=True)
with open(results_log_path, "w") as f:
f.write(f"WER: {str(word_error_rate)}\n")
f.write(f"RTF: {str(rtf)}\n")
print(f"WED: {word_error_rate:.2f}")
print(f"RTF: {rtf}")
if __name__ == "__main__":
main()