forked from kevinlawler/kona
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvg.c
362 lines (326 loc) · 11.9 KB
/
vg.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#include "incs.h"
#include "k.h"
#include "kg.h"
#include "km.h"
#include "v.h"
#include "vc.h"
/* grade / grouping / sorting / shape verbs */
//TODO: sort type-0 lists, functions, symbols, etc.
//note: K appears to sort _reserved functions by alphabetical order, but this may be a side effect of
// sorting by address (if the functions appear in alphabetical order in the source file)
// though oddly enough it appears to hold across all underscore/reserved functions (not just math)
// _in falls to the end since it is defined as some variation on a char func that works as an inline verb
// If you look at the binary the symbols appear to be listed out of alphabetical order
//one interesting way to test how functions are sorted would be to load the interpreter twice,
//inputting the same collection of functions each time but in a different order
//if the sort order changes for each instance then sorting is probably based on pointer/reference value
//if that fails then it may be necessary to look at distinctions between wordfunc,charfunc, valence, proj, etc
Z K grade_updown(K a, I r)
{
I at=a->t, an=a->n;
P(0< at, RE)
if(-3==at) R charGrade(a,r);
if(-1==at)
{
I x,u=II,v=-II;//MIN,MAX
DO(an, x=kI(a)[i]; if(x<u)u=x; if(x>v)v=x;)
if(v-u < 87654321) R distributionGrade(a,r,u,v);//Magic Number
}
if(-1==at || -2==at)
{
//TODO: Attempt [Recursive] [Histogram] Bucket[sort] Grade if OK distribution
}
R mergeGrade(a,r);
}
K grade_up(K a){R grade_updown(a,0);}
K grade_down(K a){R grade_updown(a,1);}
K enlist(K x)
{
I t=(1<= xt && xt<=4)?-xt:0; //Atoms become vectors. Else becomes list.
K z=newK(t,1);
if(-4==t)*kS(z)=*kS(x);
if(-3==t)*kC(z)=*kC(x);
if(-2==t)*kF(z)=*kF(x);
if(-1==t)*kI(z)=*kI(x);
if( 0==t)*kK(z)=ci(x);
R z;
}
K range(K a)
{
I t=a->t, n=a->n;
P(t>0,RE)
K z=0,g=0,k=0;
I u=n;
g=grade_up(a); if(!g) GC;
k=grade_up(g); if(!k) GC;
I *h=kI(g);
if(-4==t)DO(n-1, if(kS(a)[h[n-i-1]]==kS(a)[h[n-i-2]]) {h[n-i-1]=-1;--u;})
if(-3==t)DO(n-1, if(kC(a)[h[n-i-1]]==kC(a)[h[n-i-2]]) {h[n-i-1]=-1;--u;})
if(-2==t)DO(n-1, if(!FC(kF(a)[h[n-i-1]],kF(a)[h[n-i-2]])){h[n-i-1]=-1;--u;})
if(-1==t)DO(n-1, if(kI(a)[h[n-i-1]]==kI(a)[h[n-i-2]]) {h[n-i-1]=-1;--u;})
if( 0==t)DO(n-1, if(matchI(kK(a)[h[n-i-1]],kK(a)[h[n-i-2]])) {h[n-i-1]=-1;--u;})
z=newK(t,u); if(!z) GC;
I x=0;
I *m=kI(k); //This could be refactored
if(-4==t)DO(n, if(h[m[i]]>-1)kS(z)[x++]=kS(a)[h[m[i]]] )
if(-3==t)DO(n, if(h[m[i]]>-1)kC(z)[x++]=kC(a)[h[m[i]]] )
if(-2==t)DO(n, if(h[m[i]]>-1)kF(z)[x++]=kF(a)[h[m[i]]] )
if(-1==t)DO(n, if(h[m[i]]>-1)kI(z)[x++]=kI(a)[h[m[i]]] )
if( 0==t)DO(n, if(h[m[i]]>-1)kK(z)[x++]=ci(kK(a)[h[m[i]]]))
cleanup:
cd(g);
cd(k);
R z;
}
K group(K x)
{
I t=xt, n=xn;
P(t>0,RE)
I u=n;
K z,b,c; //was K z=0,b=0,c=0;
M(b=grade_up(x))
M(b,c=grade_up(b))//Nastier code would eliminate this second sort.
I *g=kI(b);//Step through, on duplicate set uniques-=1, mark by inverting sign of corresponding index
I *h=kI(c);
if(-4==t)DO(n-1, if(kS(x)[g[n-i-1]]==kS(x)[g[n-i-2]]) {--u;g[n-i-1]*=-1;})
if(-3==t)DO(n-1, if(kC(x)[g[n-i-1]]==kC(x)[g[n-i-2]]) {--u;g[n-i-1]*=-1;})
if(-2==t)DO(n-1, if(!FC(kF(x)[g[n-i-1]],kF(x)[g[n-i-2]])) {--u;g[n-i-1]*=-1;})
if(-1==t)DO(n-1, if(kI(x)[g[n-i-1]]==kI(x)[g[n-i-2]]) {--u;g[n-i-1]*=-1;})
if( 0==t)DO(n-1, if(matchI(kK(x)[g[n-i-1]],kK(x)[g[n-i-2]])){--u;g[n-i-1]*=-1;})
z=newK(0,u);
M(b,c,z);
I k=0,p=0,v;
while(p<n && k<u)//This is a tricky algorithm.
{ //Dupes in g marked negative. h[p] is index of a[p] in sorted a
for(v=1;p+v<n && g[h[p]+v]<0;v++);//Find the length of z[k]
K s=newK(-1,v);
M(b,c,z,s)
DO(v, kI(s)[i]=ABS(g[h[p]+i]))//ABS because duplicates marked negative
kK(z)[k]=s;
while(++p<n && g[h[p]]<0);
k++;
}
cd(b);
cd(c);
R z;
}
I VAT(I i){R 1<=i && i<=4?i:0;} //vector atom type
K flip(K a)
{
K x;I i,p=a->n,q=-1;
if(a->t || !p)R ci(a);//Identity on atoms/vectors && empty 0-list && 0-list of atoms
DO(p, x=kK(a)[i]; if(x->t<1)q=x->n);
if(-1==q)R ci(a);//Identity on 0-list of atoms
DO(p, x=kK(a)[i]; if(x->t<1 && x->n!=q)R LE;)
K z=newK(0,q); //mmo
for(i=0;i<q;i++)//This kind of thing is always tricky.
{
K* c=kK(a); K d=c[0];//Temporary variables
I u,t=-ABS(d->t?d->t:VAT(u=kK(d)[i]->t)?u:0);//Starting type: vector's type or i-th-item-in-a-list's type
DO2(p, d=c[j]; t=t==-ABS(d->t?d->t:VAT(u=kK(d)[i]->t)?u:0)?t:0 )//DO2: Get type. Flip won't pr0mote I to F
K y=kK(z)[i]=newK(t,p); //oom
if (-4==t) DO2(p, d=c[j]; kS(y)[j]=d->t?kS(d)[i% d->n]:*kS(kK(d)[i]) )
else if(-3==t) DO2(p, d=c[j]; kC(y)[j]=d->t?kC(d)[i% d->n]:*kC(kK(d)[i]) )
else if(-2==t) DO2(p, d=c[j]; kF(y)[j]=d->t?kF(d)[i% d->n]:*kF(kK(d)[i]) )
else if(-1==t) DO2(p, d=c[j]; kI(y)[j]=d->t?kI(d)[i% d->n]:*kI(kK(d)[i]) )
else if( 0==t) DO2(p, d=c[j]; kK(y)[j]=itemAtIndex(d,i)) //mmo
}
R z;
}
K first(K a)
{ //Empty lists return prototypical atoms, e.g., *0#0.0 yields 0.0
I at=a->t, an=a->n;
if(-4==at)R Ks(an?*kS(a):LS);
if(-3==at)R Kc(an?*kC(a):' ');//Vectors
if(-2==at)R Kf(an?*kF(a):0.0);
if(-1==at)R Ki(an?*kI(a):0);
if( 0==at)R an?ci(*kK(a)):_n();//Lists - *() yields _n
R ci(a);//Atoms
}
Z K reshaper(K a, K b, I d, I f, I* p)
{ //a is non-empty int vector with: (0 0s, 0 -1s),(1 -1),or(1+ 0s)
I bt=b->t, bn=b->n;
I v=kI(a)[d];
I g=!v||a->n==d+1?1:0;//hit bottom?
I t= (g && bt<5)?-ABS(bt):0;// 2 3 4 0 #/: (_n;{x})
I n=-1==v?f:v;//f is missing factor
K z=newK(t,n); U(z)
if(!g)DO(n,kK(z)[i]=reshaper(a,b,d+1,f,p))
else if(4==ABS(bt))DO(n,kS(z)[i]=bn?kS(b)[++*p%bn]:LS)
else if(3==ABS(bt))DO(n,kC(z)[i]=bn?kC(b)[++*p%bn]:' ')
else if(2==ABS(bt))DO(n,kF(z)[i]=bn?kF(b)[++*p%bn]:0.0)
else if(1==ABS(bt))DO(n,kI(z)[i]=bn?kI(b)[++*p%bn]:0)
else if(0==ABS(bt))DO(n,kK(z)[i]=bn?ci(kK(b)[++*p%bn]):_n())
else if(5<= bt )DO(n,kK(z)[i]=ci(b))
R z;
}
K reshape(K a, K b)
{
I an=a->n, bn=b->n;
if(!an)R first(b);//sic
I ns=0,x,y=-1;
DO(an, if(0>(x=kI(a)[i])){ns-=x;})//If any <0, only one -1
P(ns < -1,DOE)
I p=1; DO(an, p*=kI(a)[i])//Product over
P(ns<0 && (!p || !bn || bn%p),LE)
R reshaper(a,b,0,p?ABS(bn/p):0,&y);
}
K take(K a, K b)
{
I bt=b->t, bn=b->n;
I n=ABS(*kI(a)), m=MAX(1,bn), k= *kI(a) % m;
k=k<0?bn+k:0;
I t=bt<5?-ABS(bt):0;
K z=newK(t,n);U(z)
if (4==ABS(bt))DO(n,kS(z)[i]=bn?kS(b)[(i+k)%m]:LS) //sp("")
else if(3==ABS(bt))DO(n,kC(z)[i]=bn?kC(b)[(i+k)%m]:' ')
else if(2==ABS(bt))DO(n,kF(z)[i]=bn?kF(b)[(i+k)%m]:0.0)
else if(1==ABS(bt))DO(n,kI(z)[i]=bn?kI(b)[(i+k)%m]:0)
else if(0== bt )DO(n,kK(z)[i]=bn?ci(kK(b)[(i+k)%m]):_n())
else if(5<= bt )DO(n,kK(z)[i]=ci(b))
R z;
}
K take_reshape(K a, K b)
{ //K3.2 will accept empty lists that aren't type -1 (as left arg)
P(a->n && 1!=ABS(a->t),IE)
R 0<a->t?take(a,b):reshape(a,b);
}
Z void shapeCheck(K a, K p, I d)
{ //Descend through list a marking shape p as -1 where it doesn't correspond
I at=a->t, an=a->n;
if(at>0 || an!=kI(p)[d]) kI(p)[d]=-1;//Mismatch or atom means p length too long
else if(at && d < p->n-1) kI(p)[d+1]=-1;//Another case of p being too long
else if(!at && an && kI(p)[d]!=-1 && d < p->n-1) DO(an, shapeCheck(kK(a)[i],p,d+1))
}
Z I firstDepth(K x){R (!x->t&&x->n)?1+firstDepth(*kK(x)):x->t>0?0:1;}//[Internal Function]
K shape(K a) //TODO: Thoroughly test this //TODO: oom
{
K b=a, p=newK(-1, firstDepth(a));//Putative list. Mutable, Thrown away
DO(p->n, kI(p)[i]=b->n; if(i<_i-1)b=*kK(b) )//Construct best-case shape
shapeCheck(a,p,0);//Punch holes (-1) in shape-list where it fails
I n=0; DO(p->n, if(kI(p)[i]==-1)break; n++)//See how far it made it
K z=newK(-1,n);
DO(n, kI(z)[i]=kI(p)[i])//Copy the good part.
cd(p);
R z;//could instead shrink p into z
}
K rotate(K a, K b)
{
I bt=b->t, bn=b->n;//Know 1==a->t and 0>=b->t
I r=*kI(a) % MAX(1,bn);// x%0 -> division error
r=r>0?r:bn+r;//Ensure mathematical definition of modulo
K z=newK(bt,bn);U(z)
if (-4==bt)DO(bn, kS(z)[i]=kS(b)[(i+r)%bn])
else if(-3==bt)DO(bn, kC(z)[i]=kC(b)[(i+r)%bn])
else if(-2==bt)DO(bn, kF(z)[i]=kF(b)[(i+r)%bn])
else if(-1==bt)DO(bn, kI(z)[i]=kI(b)[(i+r)%bn])
else if( 0==bt)DO(bn, kK(z)[i]=ci(kK(b)[(i+r)%bn]))
R z;
}
K drop(K a, K b)
{
I at=a->t, bt=b->t, bn=b->n;
P(1!=at,IE)
if(bt>0)R ci(b);//Drop always identity on atoms
I v=*kI(a);
I zn=MAX(0,bn-ABS(v));
K z=newK(bt,zn);
U(z)
I c=v<1?0:MIN(v,bn);
if (-4==bt)DO(zn,kS(z)[i]=kS(b)[i+c])
else if(-3==bt)DO(zn,kC(z)[i]=kC(b)[i+c])
else if(-2==bt)DO(zn,kF(z)[i]=kF(b)[i+c])
else if(-1==bt)DO(zn,kI(z)[i]=kI(b)[i+c])
else if( 0==bt)DO(zn,kK(z)[i]=ci(kK(b)[i+c]))
R z;
}
K cut(K a, K b)
{
I at=a->t, an=a->n, bt=b->t, bn=b->n;
P(-1!=at,IE)
DO(an, I x=kI(a)[i]; if(x<0|| x < kI(a)[i>0?i-1:0])R DOE; else if(x > bn)R LE )
K z=newK(0,an);
U(z)
I zn=z->n;
//TODO: oom
#define FCUT I x=kI(a)[i],y=(i==z->n-1)?bn:kI(a)[i+1];
if (-4==bt) DO(zn, FCUT; K w=newK(-4,y-x); DO2(w->n,kS(w)[j]=kS(b)[x+j]); kK(z)[i]=w)
else if(-3==bt) DO(zn, FCUT; K w=newK(-3,y-x); DO2(w->n,kC(w)[j]=kC(b)[x+j]); kK(z)[i]=w)
else if(-2==bt) DO(zn, FCUT; K w=newK(-2,y-x); DO2(w->n,kF(w)[j]=kF(b)[x+j]); kK(z)[i]=w)
else if(-1==bt) DO(zn, FCUT; K w=newK(-1,y-x); DO2(w->n,kI(w)[j]=kI(b)[x+j]); kK(z)[i]=w)
else if( 0==bt) //Have to check if we have subsequences of similarly-typed atoms
{ I i;
for(i=0;i<zn;i++)
{ FCUT;
I sn=y-x;//Size of sublist
I t=bt;//Empty sublists in z will inherit b's type
if(sn && x < bn)t=kK(b)[x]->t;//Non-empty sublist, valid index?
DO2(sn, if(t!=kK(b)[x+j]->t){t=0;break;})//Check for consistency
t=-MAX(0,t); //Atom sequences become vectors, but nothing special for vectors
K s=newK(t,sn);//Sublist for z
if (-4==t)DO2(sn,kS(s)[j]=*kS(kK(b)[x+j]))
else if(-3==t)DO2(sn,kC(s)[j]=*kC(kK(b)[x+j]))
else if(-2==t)DO2(sn,kF(s)[j]=*kF(kK(b)[x+j]))
else if(-1==t)DO2(sn,kI(s)[j]=*kI(kK(b)[x+j]))
else if( 0==t)DO2(sn,kK(s)[j]=ci(kK(b)[x+j]))
kK(z)[i]=s;
}
}
R z;
}
K drop_cut(K a, K b)
{
if(1 != ABS(a->t) || (-1==a->t && 0<b->t))R IE;
R 1==a->t?drop(a,b):cut(a,b);
}
K where(K x)
{
P(!xn,newK(-1,0))
P(1!=ABS(xt),IE)
I zn=0,y,j,t=0;
//DO(xn,if((y=kI(x)[i])<0)R DOE;zn+=y)
DO(xn,if((y=kI(x)[i])<0)continue;zn+=y)//skip negatives instead of error
K z=newK(-1,zn); U(z)
DO(xn, for(j=0;j<kI(x)[i];j++)kI(z)[t++]=i)//Handles a-> == +-1
R z;
}
//TODO: The smarter way to do this is to write it in such a way that it can return the same input (e.g., if refcount == 1?, then use a temp holder and do the swaps in pairs)
K reverse(K a)
{
I at=a->t,an=a->n;
if(0<at)R ci(a);//Atoms
K z=newK(at,an); U(z)
if (-4==at) DO(an,kS(z)[i]=kS(a)[an-i-1]) //This could all be refactored
else if(-3==at) DO(an,kC(z)[i]=kC(a)[an-i-1])
else if(-2==at) DO(an,kF(z)[i]=kF(a)[an-i-1])
else if(-1==at) DO(an,kI(z)[i]=kI(a)[an-i-1])
else if( 0==at) DO(an,kK(z)[i]=ci(kK(a)[an-i-1]))
R z;
}
I countI(K a){R a->t>0?1:a->n;}
K count(K a){R Ki(countI(a));}//[sic] Should always be 1 for an atom (t of 5,7 may have different n)
K join(K a, K b)//TODO: 5,6?
{
I at=a->t, ak=countI(a), bt=b->t, bk=countI(b);
I zt=0;
if(ABS(at)==ABS(bt))zt=-ABS(at);//K-Improvement?: ABS(at)=1or2 && ABS(bt)==1or2 should yield zt==-2
if(!ak)zt=-ABS(bt);
else if(!bk)zt=-ABS(at);//'else' is sic. In "K3.21 2006-02-01" right empty list takes precedence
if(zt < -4)zt=0;
I zn=ak+bk;
K z=newK(zt,zn);U(z)
//TODO: all this should be replaced with memcpy calls
if (-4==zt){DO(ak,kS(z)[i]=kS(a)[i]) DO(bk,kS(z)[ak+i]=kS(b)[i])}
else if(-3==zt){DO(ak,kC(z)[i]=kC(a)[i]) DO(bk,kC(z)[ak+i]=kC(b)[i])}
else if(-2==zt){DO(ak,kF(z)[i]=kF(a)[i]) DO(bk,kF(z)[ak+i]=kF(b)[i])}
else if(-1==zt){DO(ak,kI(z)[i]=kI(a)[i]) DO(bk,kI(z)[ak+i]=kI(b)[i])}
else if( 0==zt)
{
//oom all here
K c=promote(a);
K d=promote(b);
DO(ak,kK(z)[i]=ci(kK(c)[i])) DO(bk,kK(z)[ak+i]=ci(kK(d)[i]))
cd(c);cd(d);
}
R z;
}