-
Notifications
You must be signed in to change notification settings - Fork 0
/
intento-1.html
240 lines (240 loc) · 22 KB
/
intento-1.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# INTENTO CON PYTHON"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## HELLO WORLD\n",
"\n",
"El primer codigo \n",
"que usaremos como lenguaje de programación es `Hello World`. \n",
"Usando la funcion: `print()`"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hola\n"
]
}
],
"source": [
"print(\"¡hola!\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## introduccion a JupyterHub\n",
"\n",
"* Para crear una nueva celda presionar la tecla B"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Operaciones aritméticas"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = 3\n",
"x = 7\n",
"a + x"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"15"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = 8\n",
"a + x\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Gráfico de densidad "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Instalamos la librería seaborn para visualizar y dotar de una interfaz al gráfico"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: seaborn in ./.local/lib/python3.8/site-packages (0.11.2)\n",
"Requirement already satisfied: pandas>=0.23 in /usr/local/lib/python3.8/dist-packages (from seaborn) (1.3.1)\n",
"Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.8/dist-packages (from seaborn) (1.21.1)\n",
"Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.8/dist-packages (from seaborn) (1.7.0)\n",
"Requirement already satisfied: matplotlib>=2.2 in /usr/local/lib/python3.8/dist-packages (from seaborn) (3.3.2)\n",
"Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas>=0.23->seaborn) (2020.4)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas>=0.23->seaborn) (2.8.1)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n",
"Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (8.0.1)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (1.3.1)\n",
"Requirement already satisfied: certifi>=2020.06.20 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (2020.6.20)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n",
"Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.14.0)\n"
]
}
],
"source": [
"!pip install seaborn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Creamos una **dataframe (DF)**\n",
"\n",
"Importamos seaborn como SNS para introducir los datos del **archivo iris**\n",
"\n",
"El dataframe tiene que ser igual a la visualización de los datos del anterior archivo. Utilizamos seaborn (tenemos que importarlo como **sns**)\n",
"\n",
"Mostramos el DF con la línea de texto: sns.kdeplot (df[\"sepal_width\"]). Prestamos atención a la variable que queremos mostrar en la X del gráfico."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<AxesSubplot:xlabel='sepal_width', ylabel='Density'>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEHCAYAAABBW1qbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvM0lEQVR4nO3deXiU9bn/8fc9k52EBJKQEBII+xb2gAsq6EEFVGitVmzV2mq1tnaztbU9XbWLrb962lrt0VpP3epatajgggKKgBD2NRD2hJAEAkkge+b+/TEDjTGQScjkmZncr+vKReaZZ2Y+zJXknue7iqpijDHGALicDmCMMSZ4WFEwxhhzihUFY4wxp1hRMMYYc4oVBWOMMadEOB2gvVJSUjQ7O9vpGMYYE1LWrFlzWFVT2zov5IpCdnY2eXl5TscwxpiQIiL7/DnPmo+MMcacYkXBGGPMKQErCiLyhIiUisjm09wvIvJnESkQkY0iMjFQWYwxxvgnkFcK/wBmnuH+WcBQ39dtwF8DmMUYY4wfAlYUVPUDoPwMp8wFnlKvlUCSiPQNVB5jjDFtc7JPoR9woNntQt+xTxGR20QkT0TyysrKuiScMcZ0RyHR0ayqj6lqrqrmpqa2OczWGGNMBzlZFIqArGa3M33HjDHGOMTJyWvzgTtF5HngHKBCVYsdzGO6kZ0lVfx16S4WbS3BozA+K4nbpw3iwqF2JWq6t4AVBRF5DpgOpIhIIfBzIBJAVf8XWADMBgqAauDLgcpiTHNvbznEN59bh1uEK8f2JTbKzVubD3Hj31fxzUuGcNelwxARp2Ma44iAFQVVvb6N+xX4RqBe35jWLNxUzDf+uZaxmUk8/qVcUuKjAfjvK0by839v4aH3C6ipb+InV45yOKkxzgi5tY+M6ah9R05w98sbGZeVxLO3nkNc1H9+/KMj3Pz26jFERbh4fNkeJg7oxewxNkLadD8hMfrImLPV5FFvk5FLeOj6CZ8oCCeJCD+5YhTjs5L44csbKTpW40BSY5xlRcF0Cy+sPsDGwgru+0wOmb3iTnteVISLh66fQIPHw28XbOvChMYEBysKJuxV1jbwh3fymZLdm6vGtt0klNU7jq9NG8wbG4tZtedMk/KNCT9WFEzY+9sHuymvruenV47ye1TR7RcNJiMxhl8v2IZ3TIQx3YMVBRPWqmobeHL5XmaOTmdMZqLfj4uNcnPnJUPZcOAYywoOBzChMcHFioIJa8+t2k9lbSN3TB/c7sd+blI/0nvG8Jf3CwKQzJjgZEXBhK36Rg+Pf7iHC4akMDYzqd2Pj45w89WLBvHxnnLW7Dva+QGNCUJWFEzYemfrIUqr6rjlwoEdfo55k7NIiI7gyeV7Oy+YMUHMioIJW8+u3E9mr1imncV6Rj2iI/jcpEwWbi6mrKquE9MZE5ysKJiwVFB6nBW7j/CFc/rjcp3dOkY3njeAhibl+VX7OymdMcHLioIJSy+s3k+kW7h2UlbbJ7dhcGo8FwxJ4fnVB/B4bHiqCW9WFEzYaWzy8Nr6g1w8vA+pCdGd8pzXTMqk6FgNq/baZDYT3qwomLDz0a4jlFXVcfXEVnd37ZDLRqcRF+Xm1bW2D5QJb1YUTNh5dW0hPWMiuHhEn057zrioCGbmpLNgUzG1DU2d9rzGBBsrCiasnKhr5O0tJVwxNoPoCHenPvfVEzKpqmtk0baSTn1eY4KJFQUTVt7fXkpNQxNzx2d0+nOfNziZtJ7R1oRkwpoVBRNWFmwqJiU+msnZvTv9ud0u4TMT+rF0RxlHjtucBROerCiYsFFd38ji/FJm5aTjPsu5Cadz9YRMGj3K6xsOBuT5jXGaFQUTNt7fXkptgyeg22gOT09gVN+evLrOmpBMeLKiYMLGW5sPkRIfxZSBnd901Nyc8RlsKKzgQHl1QF/HGCdYUTBhob7Rw9L8MmaMTAtY09FJs3LSAXh7y6GAvo4xTrCiYMLCqj3lVNU1MmNkWsBfa0ByD0Zn9GTBpuKAv5YxXc2KggkLi7aVEB3hYuqQlC55vdlj+rJ2/zGKK2q65PWM6SpWFEzIU1UWbSvhwqEpxEZ17oS105l5sglpszUhmfBiRcGEvPySKgqP1nRJ09FJg1PjGZ6WwAIrCibMWFEwIW/RVu+yE5eM7Ly1jvwxa0w6q/eWU1pV26Wva0wgWVEwIW/RtlLGZSXRJyGmS1939pi+qMLbW2wtJBM+rCiYkFZaVcv6A8e4tIuvEgCG9olncGoPFtooJBNGrCiYkPb+tlIAZozquv6Ek0SEWTl9+XhPOeUn6rv89Y0JBCsKJqS9t72UfkmxDE9LcOT1Z+ak0+RRW07bhA0rCiZk1Td6WF5wmItHpCIS2FnMpzM6oyf9kmJtaKoJG1YUTMhas+8oJ+qbuGhoqmMZRISZOel8uPMwx+saHcthTGcJaFEQkZkiki8iBSJyTyv39xeRxSKyTkQ2isjsQOYx4WXpjjIiXML5XTSL+XRm5qRT3+Rh8fZSR3MY0xkCVhRExA08DMwCRgHXi8ioFqf9BHhRVScA84BHApXHhJ8PdpSRm92L+OgIR3NM7N+LlPho3rIF8kwYCOSVwhSgQFV3q2o98Dwwt8U5CvT0fZ8I2M4lxi+lVbVsLa7komHONR2d5HYJl49OY/H2UmobmpyOY8xZCWRR6AccaHa70HesuV8AN4hIIbAA+GZrTyQit4lInojklZWVBSKrCTEf7jgMwLQgKArgbUKqrm9i2c7DTkcx5qw43dF8PfAPVc0EZgNPi8inMqnqY6qaq6q5qanB8UfAOGvpjjJS4qMZmd6z7ZO7wLmDkukZE2FNSCbkBbIoFAFZzW5n+o41dwvwIoCqrgBiAGd7DU3Qa/IoH+4s46JhKbgCvKGOvyLdLmaMSmPRthIamjxOxzGmwwJZFFYDQ0VkoIhE4e1Int/inP3AfwGIyEi8RcHah8wZbS6q4Gh1Q9A0HZ00c3Q6x6obWLWn3OkoxnRYwIqCqjYCdwJvA9vwjjLaIiL3isgc32nfA74qIhuA54CbVVUDlcmEhw92lCECFzg8FLWli4alEhvpZuFmWwvJhK6AjuVT1QV4O5CbH/tZs++3AlMDmcGEn6U7yhjTL5Hk+Gino3xCTKSbi0ek8vaWEu6dkxM0TVvGtIfTHc3GtEtFTQPrDhwLuqajky4fnU5ZVR3rDhx1OooxHWJFwYSU5QWHafJoUMxPaM0lI/oQ5Xbxlq2FZEKUFQUTUpbuKCMhJoIJWUlOR2lVQkwkU4ck89aWQ1j3mAlFVhRMyFBVPthRxtTBKUS4g/dHd2ZOOgfKa9haXOl0FGPaLXh/s4xpoaD0OAcrapk2PDibjk6aMTINl2DLaZuQZEXBhIylO7xTWIK1P+Gk5PhopgzsbbObTUiyomBCxtIdZQzpE0+/pFino7Rp5uh0dpQcZ1fZcaejGNMuVhRMSKhtaGLVnnJHN9Rpj8tGpwPwtl0tmBBjRcGEhJW7j1DX6An6/oSTMpJiGZeVZP0KJuRYUTAhYemOMqIjXJwzsLfTUfw2c3Q6GworKDpW43QUY/xmRcGEhA92lHHOoGRiIt1OR/Hb5aPTABuFZEKLFQUT9AqPVrOr7AQXDQ2uBfDaMig1nhHpCSzYZAvkmdBhRcEEvQ98u6xND5H+hOauGpdB3r6j1oRkQoYVBRP0lu4oJSMxhsGp8U5HaberxmYA8MYG237chAYrCiaoNTR5WF5whGnDUxEJvaWo+yfHMS4ridc3WlEwocGKgglq6/Yfo6quMWTmJ7TmqrF92VxUyW6byGZCgBUFE9SW5JfidgnnB9kua+1x5dgMROD1DdbhbIKfFQUT1JbklzFpQC8SYyOdjtJh6YkxTMnuzfwNRbactgl6VhRM0CqprGVrcWVIjjpq6apxGewqO8H2Q1VORzHmjKwomKC1NN+7Kur0YX0cTnL2ZuWk43YJ820UkglyVhRM0FqcX0paz2hG9k1wOspZS46P5sKhKfx7XREejzUhmeBlRcEEpYYmD8t2Hmb6sD4hORS1NVdPzORgRS0r9xxxOooxp2VFwQSlNfuOUlXXyMUjQr8/4aTLRqWREB3BK2uLnI5izGlZUTBBaUl+GREuYWoID0VtKSbSzewxfVm4qZjq+kan4xjTKisKJigtyS9l0oBeJMSE7lDU1lw9sR8n6pt4Z0uJ01GMaZUVBRN0iitq2H6oiotHhP6oo5YmZ/cms1cs/1pb6HQUY1plRcEEnVNDUcNgfkJLLpdw9YR+fFRwmJLKWqfjGPMpVhRM0FmcX0rfxBiGp4X+UNTWfHZiJh6Ff6+3DmcTfKwomKBS3+jho4IjTA/RVVH9MTClBxP7J/FiXqEte2GCjhUFE1Ty9pVzvK6R6cPDrz+huesmZ1FQepy1+485HcWYT7CiYILK0vwyIt3hNRS1NVeMzSAuys0Lq/c7HcWYT7CiYILKkvwycgf0Jj46wukoARUfHcFVYzN4Y2Mxx+tszoIJHlYUTNA4UF5NfkkVl4ThUNTWXDcli+r6Jtuq0wSVgBYFEZkpIvkiUiAi95zmnM+LyFYR2SIi/wxkHhPc3t3qndB16ag0h5N0jQlZSQxLi+f51QecjmLMKQErCiLiBh4GZgGjgOtFZFSLc4YCPwKmqupo4DuBymOC37tbSxjaJ57slB5OR+kSIsJ1k/uz/sAxth+qdDqOMUBgrxSmAAWqultV64Hngbktzvkq8LCqHgVQ1dIA5jFBrKK6gVV7y5nRTa4STvrshH5EuoUX7GrBBIlAFoV+QPOf9ELfseaGAcNE5CMRWSkiM1t7IhG5TUTyRCSvrKwsQHGNk5bsKKXJo92m6eik3j2iuGx0Oq+uK6KuscnpOMY43tEcAQwFpgPXA38TkaSWJ6nqY6qaq6q5qanht/SBgXe2lpASH834zCSno3S5eZOzOFbdYIvkmaDgV1EQkVdE5AoRaU8RKQKymt3O9B1rrhCYr6oNqroH2IG3SJhupL7Rw9L8MmaM7IPLFZ6zmM9k6uAU+iXFWhOSCQr+/pF/BPgCsFNE7heR4X48ZjUwVEQGikgUMA+Y3+Kc1/BeJSAiKXibk3b7mcmEiZW7j3C8rrHbNR2d5HIJn8/NYlnBYfYfqXY6junm/CoKqrpIVb8ITAT2AotEZLmIfFlEWl3wXlUbgTuBt4FtwIuqukVE7hWROb7T3gaOiMhWYDFwt6raXoXdzKJtJcRGusN+FvOZXJubiUvgOZvhbBzmd3OQiCQDNwO3AuuAP+EtEu+e7jGqukBVh6nqYFX9te/Yz1R1vu97VdW7VHWUqo5R1efP4v9iQpCqsmhrCRcOTSEm0u10HMdkJMVyyYg0Xlx9gPpGj9NxTDfmb5/Cq8CHQBxwlarOUdUXVPWbQHwgA5rwtqGwgoMVtVw2Ot3pKI674dz+HDlRz1tbDjkdxXRj/l4p/M33af63qloMICLRAKqaG7B0Juwt3FRMpFu4dGT37E9o7qKhqfTvHcczK/c5HcV0Y/4WhV+1cmxFZwYx3Y+qsmBzMVOHpJAYF157MXeEyyV84Zz+rNpTzo6SKqfjmG7qjEVBRNJFZBIQKyITRGSi72s63qYkYzpsy8FKDpTXMDunr9NRgsa1kzKJcrv458fW4Wyc0db6xJfj7VzOBB5sdrwK+HGAMpluYsGmYtwu6bZDUVuTHB/NrDHp/GtNIT+YOZy4qPBeQtwEnzNeKajqk6p6MXCzql7c7GuOqr7SRRlNGFJVFmwq5vzByfTqEeV0nKByw7kDqKprZP56W1LbdL0zfgwRkRtU9RkgW0Tuanm/qj7YysOMadO24ir2Hqnm9mmDnY4SdHIH9GJYWjzPfLyP6yZnhe1e1SY4tdXRfHIN43ggoZUvYzpk4eZiXAKXWdPRp4gIN5w7gM1FlWwsrHA6julmzniloKqP+v79ZdfEMd3Byaajcwclkxwf7XScoPTZCf24f+F2nlm5j3FZSU7HMd2Iv5PXfi8iPUUkUkTeE5EyEbkh0OFMeNpWXMWushPMHmOjjk4nISaSueP78frGg1RUNzgdx3Qj/s5TuExVK4Er8a59NAS4O1ChTHh7bX0RES7hCisKZ/TFc/pT2+DhX2sLnY5iuhF/i8LJZqYrgJdU1Ro6TYc0eZT56w8yfXiqjTpqQ06/RMZnJfHsx/tQVafjmG7C36LwhohsByYB74lIKlAbuFgmXH285wiHKmuZO77lJnymNTecO4BdZSdYsdsWDzZdw9+ls+8BzgdyVbUBOMGn91s2pk2vrSuiR5SbGbbWkV+uHNuXxNhInl1pM5xN12jPdMkReOcrNH/MU52cx4Sx2oYmFm46xMycvsRGdd9lstsjJtLNNZMyeXL5XkqraumTEON0JBPm/B199DTw/4ALgMm+L1sd1bTL4u2lVNU18pkJGU5HCSlfPKc/jR7lRduu03QBf68UcoFRar1d5iy8uq6I1IRozh/cfXdY64hBqfFMHZLMPz/ez9emDSbC3Z6t0o1pH39/ujYDtguK6bBj1fUsyS/jqrEZuF22bEN73XjuAA5W1PLe9lKno5gw5++VQgqwVURWAXUnD6rqnNM/xJj/eG1dEfVNHj43yUYddcSMkWn0TYzhqRV7udx2qTMB5G9R+EUgQ5jwpqq8kFdITr+ejM5IdDpOSIpwu7jh3AE88HY+BaVVDOljS4+ZwPB3SOpSvDOZI33frwbWBjCXCSObiyrZVlzJdblZTkcJaddNziLK7eKpFbZdpwkcf0cffRV4GXjUd6gf8FqAMpkw80LefqIjXMyxCWtnJSU+mivH9eVfawqpqrX1kExg+NvR/A1gKlAJoKo7gT6BCmXCR21DE/9ef5BZOekkxto+zGfrS+dlc6K+iVfXFTkdxYQpf4tCnarWn7zhm8Bmw1NNmxZuLqaqtpHPT7amo84wLiuJcVlJPLl8r62HZALC36KwVER+DMSKyKXAS8DrgYtlwsULqw/Qv3cc5w5MdjpK2PjSed71kJbvsvWQTOfztyjcA5QBm4DbgQXATwIVyoSHPYdPsHJ3OZ/PzcRlcxM6zewxfUnuEcWTy/c6HcWEIb+GpKqqR0ReA15T1bLARjLh4pmV+4hwCZ+3UUedKibSzbwpWfx1yS4Kj1aT2SvO6UgmjJzxSkG8fiEih4F8IN+369rPuiaeCVU19U28lHeAmTnp9Olpi7h1ti+eMwAR4emVNjzVdK62mo++i3fU0WRV7a2qvYFzgKki8t2ApzMh69/ri6isbeSm87KdjhKWMpJimTk6nec+3s+Jukan45gw0lZRuBG4XlX3nDygqruBG4CbAhnMhC5V5ckV+xiRnsDk7F5OxwlbX7lgIJW1jbZdp+lUbRWFSFU93PKgr1/BBp2bVq3Zd5RtxZXcdF42ItbBHCiTBvRifFYS//fRXjweG55qOkdbRaG+g/eZbuypFftIiImwfRO6wC0XDGTP4RO8b6unmk7SVlEYJyKVrXxVAWO6IqAJLaVVtSzcXMy1k7KIi2rPxn6mI2blpJORGMPjy3Y7HcWEiTMWBVV1q2rPVr4SVLXN5iMRmSki+SJSICL3nOG8z4mIiojt5hbinl6xj0aPcuN5A5yO0i1EuF3cPDWblbvL2XKwwuk4JgwEbAsnEXEDDwOzgFHA9SIyqpXzEoBvAx8HKovpGjX1TTy9ch+XjkxjYEoPp+N0G9dN7k+PKDd/+8CuFszZC+S+flOAAlXd7Vs36Xlgbivn3Qf8DqgNYBbTBV5ec4Bj1Q189aJBTkfpVhJjI7l+Sn9e31jMgfJqp+OYEBfIotAPaL7TeKHv2CkiMhHIUtU3A5jDdIEmj/L3ZXsYn5VE7gAbhtrVbr1wEC6Bx+xqwZwlx3YAFxEX8CDwPT/OvU1E8kQkr6zMVtkIRu9uLWHvkWq+euEgG4bqgPTEGK6ekMmLeQcoq6pr+wHGnEYgi0IR0HzRm0zfsZMSgBxgiYjsBc4F5rfW2ayqj6lqrqrmpqamBjCy6ajHP9xNVu9YLh+d5nSUbuv2aYOob/LwxEd72j7ZmNMIZFFYDQwVkYEiEgXMA+afvFNVK1Q1RVWzVTUbWAnMUdW8AGYyAbBm31Hy9h3lK1MHEuF27OKz2xuUGs/snL48s2IflbYzm+mggP0Gq2ojcCfwNrANeFFVt4jIvSIyJ1Cva7reI4sLSIqLtNVQg8Ad0wdTVdfI07aPs+mggM4uUtUFePdeaH6s1RVWVXV6ILOYwNh6sJL3tpdy16XD6BFtk9WcltMvkenDU/nbh7u58bwB9Iyx1WhM+9i1vjkrjywpID46gi/ZaqhB43uXDudYdQNPLLO+BdN+VhRMh+0uO86bm4q54dwBJMbZJ9JgMSYzkctHp/H4h3s4esKWKDPtY0XBdNhfl+wiyu3ilgsGOh3FtPC9y4Zzor6RR23egmknKwqmQ4qO1fDquiKun9Kf1IRop+OYFoalJTB3XAb/WL6H0ipbLMD4z4qC6ZC/vF+ACNxmS1oEre/MGEZDk/Lw+wVORzEhxIqCabcD5dW8lHeAeZP7k5EU63QccxrZKT2YNzmLZz7ez86SKqfjmBBhRcG025/f24nLJXzj4iFORzFtuOvSYcRFubn3ja2o2u5spm1WFEy77Dl8glfWFXHDOQNIT4xxOo5pQ3J8NN+ZMYwPdx623dmMX6womHb506IdRLqFr023voRQcdN5Axic2oP73thKfaPH6TgmyFlRMH4rKK3i3xsO8qXzsumTYFcJoSLS7eJnV41m75Fq/s8WyzNtsKJg/PY/i3YSF+nm9mmDnY5i2mnasFRmjOzDHxfttI14zBlZUTB+2VZcyZsbi/ny1IH07hHldBzTAffOzcEl8KNXNlmnszktKwrGL//z7g4SoiO49UKbvRyqMpJiuWf2SJYVHOalNYVOxzFByoqCadPa/Ud5Z2sJt1w4kKQ4u0oIZV+c0p8pA3vzqze2UlppM53Np1lRMGekqty/cDsp8VHceqGNOAp1Lpdw/9VjqGv08ONXN1szkvkUKwrmjJbkl7FqTznf/q+hxNt+CWFhUGo8d18+nEXbSnhu1QGn45ggY0XBnFaTR/ndW9vJTo5j3pT+TscxnegrUwdy4dAU7n1jiy2BYT7BioI5rVfXFbH9UBXfv3w4kbb3clhxuYQ/fH4cPaIi+Nbz66ltaHI6kgkS9ptuWlXb0MSD7+QzNjOR2Tl9nY5jAqBPQgwPXDuWbcWV3L9wu9NxTJCwomBa9fSKfRysqOWemSNwucTpOCZALhmRxpenZvOP5Xt5c2Ox03FMELCiYD6loqaBvywu4KJhqZw/JMXpOCbAfjRrJBP7J3H3yxsoKLX+he7OioL5lEeWFFBZ28A9M0c4HcV0gagIF498cRJxUW5ue3oNVbUNTkcyDrKiYD5h/5Fq/m/ZXj47oR+jMno6Hcd0kfTEGB66fiL7jlTzg5c32vyFbsyKgvmE+9/ahtsl/OByu0robs4bnMwPZw5n4eZDPP6hrabaXVlRMKes2lPOgk2HuH3aINtAp5v66oWDmJWTzv1vbWfFriNOxzEOsKJgAPB4lF+9uZX0njHcdpEtZ9FdiQgPXDuO7OQ47vznWoorapyOZLqYFQUDwGvri9hYWMEPZg4nLsqWs+jO4qMjePTGXGobmrjjmbXUNdrEtu7EioKhur6R37/lnaj2mfH9nI5jgsCQPvH8v2vHsf7AMe59favTcUwXsqJgeOyD3RyqrOWnV46yiWrmlFlj+vK1aYN59uP9vJhnC+d1F1YUurlDFbU8unQ3V4zpy+Ts3k7HMUHm+5cNY+qQZH7y2mY2FVY4Hcd0ASsK3dzv395Ok0f5oU1UM62IcLv487wJpPSI4mvPrKH8RL3TkUyAWVHoxjYWHuOVtUV8+YJs+ifHOR3HBKnk+Gj+98ZJlB2v41vPraPJYxPbwpkVhW5KVbn39a0k94jiGxcPcTqOCXJjM5O4b+5olhUc5n/e3eF0HBNAAS0KIjJTRPJFpEBE7mnl/rtEZKuIbBSR90RkQCDzmP94dV0RefuO8oOZw+kZE+l0HBMCrpvcn+tys3h4SQEf7ChzOo4JkIAVBRFxAw8Ds4BRwPUiMqrFaeuAXFUdC7wM/D5Qecx/VNU28NuF2xmXmci1k7KcjmNCyC/mjGZYnwS++8J6SitrnY5jAiCQVwpTgAJV3a2q9cDzwNzmJ6jqYlWt9t1cCWQGMI/xeej9Asqq6vjl3BwbgmraJTbKzV++MIHq+ia+/fx6618IQ4EsCv2A5oObC33HTucWYGEA8xigoLSKJ5bt4brcLMZnJTkdx4SgoWkJ3Dt3NCt2H+Gh93c6Hcd0sqDoaBaRG4Bc4IHT3H+biOSJSF5ZmbVldpSq8svXtxIb5ebumcOdjmNC2LW5WVw9sR9/em8ny3cddjqO6USBLApFQPMG60zfsU8QkRnAfwNzVLWutSdS1cdUNVdVc1NTUwMStjt4e0sJH+48zPcuHUZKfLTTcUyIu29uDoNSevDt59dTVtXqr64JQYEsCquBoSIyUESigHnA/OYniMgE4FG8BaE0gFm6vdqGJu57Yysj0hO44Vwb5GXOXo/oCB7+4kQqaxq468X1eKx/ISwErCioaiNwJ/A2sA14UVW3iMi9IjLHd9oDQDzwkoisF5H5p3k6c5Yeen8nRcdq+MWc0US4g6LV0ISBEek9+cWc0Xy48zB/XbrL6TimEwR0jWRVXQAsaHHsZ82+nxHI1zdeO0qqeHTpbq6ZlMm5g5KdjmPCzLzJWazYdYQ/vJNP7oBenGM/YyHNPjKGOY9H+fErm0iIieDHs0c6HceEIRHhN1ePITu5B996fh2Hj1v/QiizohDmXsg7QN6+o/x49kh694hyOo4JU/G+/oVj1Q189wXrXwhlVhTCWFlVHb9dsI1zBvbmmkk2L9AE1si+/+lfeGRJgdNxTAdZUQhjv35zKzUNTfz6s2MQsZnLJvDmTc5i7vgMHnx3Byt2HXE6jukAKwph6sOdZby2/iB3TB/CkD7xTscx3YSI8JvPjiE7xdu/YPMXQo8VhTBUXd/If7+6mYEpPfj69MFOxzHdTI/oCB7+gnf+wndfsPWRQo0VhTD0+7fy2V9ezf1XjyEm0u10HNMNjezbk1/O8e6/8Jf3rX8hlFhRCDMrdx/hH8v3cvP52TZe3DjquslZXD2hH398bweLtpY4Hcf4yYpCGKmub+QHL29kQHIcP7AF74zDTs5fyMlI5DsvrGdnSZXTkYwfrCiEkd8t3M7+8mp+/7mxxEUFdLK6MX6JiXTz2E2TiIl0c+tTeRyrrnc6kmmDFYUwsTi/lCdX7OPLU63ZyASXvomxPHrjRIqP1fL1Z9dS3+hxOpI5AysKYaCsqo67X9rA8LQEfjhzhNNxjPmUSQN685urx7B81xG+/9IGm/EcxKyNIcR5PMr3X9pAVW0jz956ro02MkHrmkmZlFbV8vu38kmJj+anV460SZVByIpCiPvH8r0s3VHGfXNHMzw9wek4xpzRHdMGU1ZVxxMf7SE1IZo7bB5N0LGiEMLW7j/KbxduY8bINNs4x4QEEeGnV4ziyPF6fvfWdlwCt0+zwhBMrCiEqNKqWu54Zg19E2P5w7Xj7DLchAyXS/jD58ehwG8Xbqeu0cO3/muo07GMjxWFENTQ5OHOZ9dRUdPAq1+fQmJcpNORjGmXSLeLP143nii3iwff3UFtQxN3Xz7cPtwEASsKIejXb25j1d5y/jRvPCP79nQ6jjEd4nYJD1wzlqgIF48s2cWBozU8cM1YGyzhMCsKIeaJZXv4x/K93HLBQOaO7+d0HGPOissl/OazOWT1juWBt/PZd+QEf7spl7SeMU5H67ZsnkIIeWPjQe57cyuXj06zrTVN2BARvj59CI/eMImC0uNc9dAyPtxZ5nSsbsuKQohYsesId72wgUn9e/GneRNwu6zt1YSXy0an88rXz6dnbCQ3/n0Vv3x9C7UNTU7H6nasKISAtfuPcttTefRPjuPxL+Vam6sJWyPSe/LGNy/g5vOz+b+P9nLVQ8tYudt2cOtKVhSC3Oq95dz4+Mf0jo/iqa9MISkuyulIxgRUTKSbX8wZzZNfmUJ1fRPzHlvJnf9cy8FjNU5H6xasKASx5QWHuenvq0hLjOGF284jIynW6UjGdJlpw1JZdNc0vjNjKO9uLeGSPyzhV29spbSy1uloYU1UQ2thqtzcXM3Ly3M6RsC9vuEg339pAwOS43jm1nPok2CjMUz3VXi0mgff3cG/1x8kwiVcP6U/N5+fTXZKD6ejhQwRWaOquW2eZ0UhuHg8yh8X7eDP7xcwObsXj96YS+8e1mRkDMDewyd4ZEkBr6wtotGjXDQslZvOHcC04alEuq3h40ysKISgytoGfvjyRhZuPsS1kzL51WdziI6wTmVjWiqprOX5VQf456p9lFTW0btHFFeM6cuc8RlM6t8Ll43O+xQrCiFmhW+d+UOVtfxo1ghuuWCgTfk3pg0NTR4Wby/l3xsO8t62EmobPGQkxjB7TF8uGdmH3AG9iYqwKwiwohAyqusbefCdHfz9oz1kJ/fgwc+PY0L/Xk7HMibkHK9rZNHWEuZvOMiynYepb/IQHx3BhUNTuHh4H6YPT6VPN54pbUUhyHk8ymvri/jdW9spqazjhnP78+PZI21vZWM6wYm6Rj4qOMzi/FIWby/jkG/E0uiMnkwdksJ5g5OZkt2bHtHd5/fNikKQUlWW5Jfxx0U72FBYwdjMRH525Shys3s7Hc2YsKSqbCuuYnF+KUt3lLF+/zHqmzxEuITxWUmcPziZ84ekMKF/Ulj34VlRCDJ1jU0s2FTMo0t3s/1QFX0TY/jeZcO5ekI/6xQzpgvV1DeRt6+c5buOsLzgMJuKKvAoREe4mJzdm/MGJ3POwN6MyUwMqyJhRSEIqCobCyv419pC5m84yLHqBob2ief2aYOZMy7DOsCMCQIVNQ2s2lPORwWHWbHrCPklVQBERbgYl5nI5OzeTM7uzcQBvUiMDd29S6woOKSq1vsD9v72Upbkl1F0rIboCBeXjU7nmkmZXDgkxa4MjAliR47XkbfvKHl7y1m99yibiypo9CgiMDwtgYkDejGmXyI5GYkMS48PmauJoCgKIjIT+BPgBh5X1ftb3B8NPAVMAo4A16nq3jM9ZzAVhcraBnaWVJF/6DhbDlawZt9R8kuqUIW4KDcXDElhxsg0Ls9JD+lPGMZ0ZzX1Taw7cJS8vUdZvbecDQeOUVnbCECkWxiWlsCwtAQGpfRgcJ94BqfGMyA5LugWrvS3KASs611E3MDDwKVAIbBaROar6tZmp90CHFXVISIyD/gdcF2gMrXG41EaPB4ampTGJg/1jR6q6hqprGmgqraRytoGKmsaqahp4FBFDQcraimuqOHgsVrKT9Sfep6E6AjG909iZk46k7N7k5vdK2Q+QRhjTi82ys35g1M4f3AK4G0WPlBew+aDFWwqqmBzUQWr9pTz6rqiTzwuuUcU6Ykx9E2MpW9iDL17RJEYG0libCQ9ff8mxkYSF+UmOsJFVISLSLf33wiXODZPKZDjsaYABaq6G0BEngfmAs2LwlzgF77vXwb+IiKiAbh8eXrFXv70XgGNHg+NTUp9k4fGJg+edrxSQkwEGYmxZCTFMDYziaxecQxLi2dYWgL9kmKtWciYbkBE6J8cR//kOGaP6XvqeHV9I7vLTrCr7Dj7jlRTXFHLoYoaCo9Ws3pvORU1De14DYhqViDcviJxz8wRfG5SZiD+W6cEsij0Aw40u10InHO6c1S1UUQqgGTgcPOTROQ24DbfzeMikt/OLCktn7OjNnfGk/iv03J3IcvcdUIxt2U+C9f8pF2nt8w9wJ8HhcTMDVV9DHiso48XkTx/2tKCTSjmtsxdJxRzW+au09HcgRwTWQRkNbud6TvW6jkiEgEk4u1wNsYY44BAFoXVwFARGSgiUcA8YH6Lc+YDX/J9fw3wfiD6E4wxxvgnYM1Hvj6CO4G38Q5JfUJVt4jIvUCeqs4H/g48LSIFQDnewhEIHW56clgo5rbMXScUc1vmrtOh3CE3ec0YY0zg2DoLxhhjTrGiYIwx5pSwKgoi8oSIlIpIq9MJRGS6iFSIyHrf18+6OmMrmbJEZLGIbBWRLSLy7VbOERH5s4gUiMhGEZnoRNZmefzJHFTvtYjEiMgqEdngy/zLVs6JFpEXfO/zxyKS7UDU5nn8yXyziJQ1e59vdSJra0TELSLrROSNVu4Lqvf6pDYyB917LSJ7RWSTL8+n1v/pyN+OkJin0A7/AP6Cdz2l0/lQVa/smjh+aQS+p6prRSQBWCMi77ZYDmQWMNT3dQ7wVz49EbAr+ZMZguu9rgMuUdXjIhIJLBORhaq6stk5ji+70oI/mQFeUNU7HcjXlm8D24CerdwXbO/1SWfKDMH5Xl+sqqebXNfuvx1hdaWgqh/gHcUUMlS1WFXX+r6vwvsD2a/FaXOBp9RrJZAkIn1xiJ+Zg4rvvTvuuxnp+2o5ymIu8KTv+5eB/xKnFqDB78xBSUQygSuAx09zSlC91+BX5lDU7r8dYVUU/HSe73J8oYiMdjpMc75L6AnAxy3uam3JkKD4I3yGzBBk77WvaWA9UAq8q6qnfZ9VtRE4ueyKY/zIDPA5X9PAyyKS1cr9Tvgj8APAc5r7g+69pu3MEHzvtQLviMga8S4H1FK7/3Z0t6KwFhigquOAh4DXnI3zHyISD/wL+I6qVjqdxx9tZA6691pVm1R1PN7Z9VNEJMfhSG3yI/PrQLaqjgXe5T+fvh0jIlcCpaq6xuks/vIzc9C918AFqjoRbzPRN0TkorN9wm5VFFS18uTluKouACJFJMXhWPjai/8FPKuqr7Ryij9LhnSptjIH63sNoKrHgMXAzBZ3Be2yK6fLrKpHVLXOd/NxvHuTOG0qMEdE9gLPA5eIyDMtzgm297rNzMH4Xqtqke/fUuBVvKtTN9fuvx3dqiiISPrJdksRmYL3/+/oL70vz9+Bbar64GlOmw/c5BtJcC5QoarFXRayBX8yB9t7LSKpIpLk+z4W7z4f21ucFlTLrviTuUX78By8/TuOUtUfqWqmqmbjXaXgfVW9ocVpQfVe+5M52N5rEenhG+iBiPQALuPTCzm3+29HWI0+EpHngOlAiogUAj/H2zmHqv4v3h++O0SkEagB5gXBWktTgRuBTb62Y4AfA/3hVO4FwGygAKgGvtz1MT/Bn8zB9l73BZ4U7+ZPLuBFVX1DnFl2xV/+ZP6WiMzBOyKsHLjZsbRtCPL3ulVB/l6nAa/6PntFAP9U1bdE5GvQ8b8dtsyFMcaYU7pV85Exxpgzs6JgjDHmFCsKxhhjTrGiYIwx5hQrCsYYY06xomCMMeYUKwrGtJN4lwX/1NLK7Xh8roj8+TT37RWRFBFJEpGvd9ZrGuMvKwrGdDFVzVPVb7VxWhLw9TbOMabTWVEwYcm3BMCbvlVaN4vIdSIySUSW+laUfPvksgUiskRE/iTejUo2+5blQESmiMgK8W66slxEhvv52pt8n/RFRI6IyE2+40+JyKXNP/WLSLKIvCPeTXQeB04uH30/MNiX6QHfsXjf6pzbReTZk8uIGNOZrCiYcDUTOKiq41Q1B3gL72qt16jqJOAJ4NfNzo/zrUb6dd994F1n6EJVnQD8DPiNn6/9Ed6lQEYDu4ELfcfPA5a3OPfnwDJVHY13QbP+vuP3ALtUdbyq3u07NgH4DjAKGOR7DWM6VVitfWRMM5uAP4jI74A3gKNADvCu7wO2G2i+MNhz4N2oSUR6+haiS8C79tBQvOvWR/r52h8CFwH78O50dZuI9MO709iJFh/wLwKu9r32myJy9AzPu0pVCwF8a05lA8v8zGSMX+xKwYQlVd0BTMRbHH4FfA7Y4vvkPV5Vx6jqZc0f0vIpgPuAxb4rjauAGD9f/gO8VwcXAkuAMrwLBH7Ywf/OSXXNvm/CPtSZALCiYMKSiGQA1ar6DPAA3n1pU0XkPN/9kfLJ3eCu8x2/AO/ywhV41/g/ufb8zf6+tqoeAFKAoaq6G++n+e/jLRYtfQB8wffas4BevuNVeK9UjOlS9knDhKsxwAMi4gEagDvwLnn8ZxFJxPuz/0dgi+/8WhFZh7eJ6Cu+Y7/H23z0E+DNdr7+x3ibqMB7hfBbWm/q+SXwnIhswdvfsB+8G7qIyEcishlY2IHXN6ZDbOls0+2JyBLg+6qa53QWY5xmzUfGGGNOsSsFYzpIRL4MfLvF4Y9U9RtO5DGmM1hRMMYYc4o1HxljjDnFioIxxphTrCgYY4w5xYqCMcaYU/4/pw19TF/11OcAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# library & dataset\n",
"import seaborn as sns\n",
"df = sns.load_dataset('iris')\n",
"\n",
"# Make default density plot\n",
"sns.kdeplot(df['sepal_width'])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Con PWD podremos conocer en que directorio estamos."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'/home/100386874@alumnos.uc3m.es'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pwd\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}