forked from temisu/oneKpaq
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathStreamCodec.cpp
339 lines (305 loc) · 12 KB
/
StreamCodec.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/* Copyright (C) Teemu Suutari */
#include <map>
#include <tuple>
#include <string>
#include <memory>
#include <algorithm> /* std::reverse, std::min_element */
#include <limits> /* std::numeric_limits */
#include <string.h> /* memcmp */
#include <stddef.h> /* size_t */
#include "onekpaq_common.h"
#include "StreamCodec.hpp"
#include "ArithEncoder.hpp"
#include "ArithDecoder.hpp"
#include "BlockCodec.hpp"
#include "CacheFile.hpp"
#include "SimpleDispatch.hpp"
#include "Timer.hpp"
std::vector<u8> StreamCodec::CreateSingleStream()
{
std::vector<u8> ret{'O','N','E','K','P','A','Q'};
ret.push_back('4'+static_cast<uint>(_mode));
ret.push_back(_shift);
ret.push_back(0);
for (auto &it:_header)
ret.insert(ret.end(),it.begin(),it.end());
if (_mode==EncodeMode::Multi||_mode==EncodeMode::MultiFast) {
ret.push_back(0);
ret.push_back(0);
}
ret.insert(ret.end(),_dest.begin(),_dest.end());
return ret;
}
std::vector<u8> StreamCodec::CreateAsmHeader()
{
// After a few optimization rounds this is messy and needs refactoring
std::vector<u8> ret;
for (auto hIt=_header.begin();hIt<_header.end();hIt++) {
if (_mode==EncodeMode::Multi||_mode==EncodeMode::MultiFast) {
uint length=(*hIt)[0]|uint((*hIt)[1])<<8;
if (hIt==_header.begin()) length++;
ret.push_back(length>>8);
ret.push_back(length);
}
for (auto mIt=hIt->begin()+3;mIt<hIt->end();mIt++) {
if (mIt+1==hIt->end()) ret.push_back(0);
else ret.push_back(~*mIt);
}
}
if (_mode==EncodeMode::Multi||_mode==EncodeMode::MultiFast) {
ret.push_back(0);
ret.push_back(0);
}
std::reverse(ret.begin(),ret.end());
#ifdef DEBUG_BUILD
for (auto i:ret) DEBUG("%02x",i);
#endif
return ret;
}
static BlockCodec::BlockCodecType StreamModetoBlockCodecType(StreamCodec::EncodeMode em)
{
return (BlockCodec::BlockCodecType[]){
BlockCodec::BlockCodecType::Single,
BlockCodec::BlockCodecType::Standard,
BlockCodec::BlockCodecType::Single,
BlockCodec::BlockCodecType::Standard
}[static_cast<uint>(em)-1];
}
void StreamCodec::Encode(const std::vector<std::vector<u8>> &blocks,EncodeMode mode,EncoderComplexity complexity,const std::string &cacheFileName)
{
ASSERT(blocks.size(),"Empty blocks");
ASSERT(uint(mode)&&mode<=EncodeMode::ModeLast,"Unknown mode");
_mode=mode;
ASSERT(uint(mode)&&complexity<=EncoderComplexity::ComplexityLast,"Unknown complexity mode");
BlockCodec::BlockCodecType bct=StreamModetoBlockCodecType(_mode);
// TODO: fix copy mess
std::vector<std::vector<u8>> encodeBlocks;
if (_mode!=EncodeMode::Multi&&_mode!=EncodeMode::MultiFast) {
encodeBlocks.resize(1);
for (auto &it:blocks) encodeBlocks[0].insert(encodeBlocks[0].end(),it.begin(),it.end());
} else encodeBlocks=blocks;
auto timeTaken=Timer([&]() {
INFO("Starting onekpaq compression with %u blocks...",int(encodeBlocks.size()));
typedef std::tuple<std::unique_ptr<BlockCodec>,uint,std::vector<u8>> BlockDef;
std::vector<BlockDef> finalBlocks;
CacheFile cf;
if (!cacheFileName.empty() && cf.readFile(cacheFileName) && cf.getNumBlocks()==encodeBlocks.size()) {
INFO("Using cache to skip brute force search");
_shift=cf.getShift();
for (uint cfi=0,i=0;i<encodeBlocks.size();i+=cf.getCombineData()[cfi++]) {
std::vector<u8> blockData;
for (uint j=0;j<cf.getCombineData()[cfi];j++)
blockData.insert(blockData.end(),encodeBlocks[i+j].begin(),encodeBlocks[i+j].end());
finalBlocks.push_back(std::make_tuple(std::unique_ptr<BlockCodec>(new BlockCodec(bct,_shift)),cf.getCombineData()[cfi],blockData));
std::get<0>(finalBlocks.back())->SetHeader(cf.getHeader()[cfi],uint(blockData.size()));
}
} else {
INFO("Cache does not exist or is not relevant. Starting brute force.");
// TODO: needs refactoring. This is too regular structure to created this way.
// (also parallelization was removed here, can be simplified)
// in order not to encode multiple times same blocks we need a map
typedef std::pair<uint,uint> BlockKeyDef;
typedef std::vector<BlockKeyDef> CombinationDef;
float currentBestLength=std::numeric_limits<float>::infinity();
PROGRESS_START("Shift", 16);
for (uint shift=1;shift<=16;shift++) {
PROGRESS_TICK("Shift");
// create possible combinations
std::map<BlockKeyDef,BlockDef> blockMap;
std::vector<CombinationDef> combinations;
if (encodeBlocks.size()==1) {
BlockKeyDef key=std::make_pair(0,encodeBlocks[0].size());
blockMap.insert(std::make_pair(key,std::make_tuple(std::unique_ptr<BlockCodec>(new BlockCodec(bct,shift)),1,encodeBlocks[0])));
combinations.push_back(CombinationDef(1,key));
} else {
std::vector<u8> combinedBlocks;
for (auto &it:encodeBlocks) combinedBlocks.insert(combinedBlocks.end(),it.begin(),it.end());
uint combinationsCount=1<<(encodeBlocks.size()-1);
combinations.resize(combinationsCount);
for (uint i=0;i<combinationsCount;i++) {
uint blockStart=0;
uint blockLength=uint(encodeBlocks[0].size());
uint blockCount=1;
for (uint j=0;j<encodeBlocks.size()-1;j++) {
if (i&(1<<j)) {
// split
BlockKeyDef key=std::make_pair(blockStart,blockLength);
combinations[i].push_back(key);
if (blockMap.find(key)==blockMap.end()) {
blockMap.insert(std::make_pair(key,std::make_tuple(std::unique_ptr<BlockCodec>(new BlockCodec(bct,shift)),blockCount,std::vector<u8>(combinedBlocks.begin()+blockStart,combinedBlocks.begin()+blockStart+blockLength))));
}
blockStart+=blockLength;
blockLength=0;
blockCount=0;
}
// next block
blockLength+=encodeBlocks[j+1].size();
blockCount++;
}
// last block
BlockKeyDef key=std::make_pair(blockStart,blockLength);
combinations[i].push_back(key);
if (blockMap.find(key)==blockMap.end()) {
blockMap.insert(std::make_pair(key,std::make_tuple(std::unique_ptr<BlockCodec>(new BlockCodec(bct,shift)),blockCount,std::vector<u8>(combinedBlocks.begin()+blockStart,combinedBlocks.begin()+blockStart+blockLength))));
}
}
}
// process all possible combinations from map.
bool multiRetry=complexity>=EncoderComplexity::High;
bool multiInit=complexity>=EncoderComplexity::Medium;
PROGRESS_START("CreateContextModels", blockMap.size());
for (auto &it:blockMap) {
PROGRESS_TICK("CreateContextModels");
std::get<0>(it.second)->CreateContextModels(std::get<2>(it.second),multiRetry,multiInit);
}
PROGRESS_END("CreateContextModels");
// find best
auto &best=*std::min_element(combinations.begin(),combinations.end(),[&](const CombinationDef &a,const CombinationDef &b) {
float aLength=0;
for (auto &it:a) aLength+=std::get<0>(blockMap[it])->GetEstimatedLength();
float bLength=0;
for (auto &it:b) bLength+=std::get<0>(blockMap[it])->GetEstimatedLength();
return aLength<bLength;
});
float tmpLength=0;
for (auto &it:best) tmpLength+=std::get<0>(blockMap[it])->GetEstimatedLength();
if (tmpLength<currentBestLength)
{
currentBestLength=tmpLength;
_shift=shift;
finalBlocks.clear();
for (auto &it:best)
finalBlocks.push_back(std::move(blockMap[it]));
}
}
PROGRESS_END("Shift");
if (!cacheFileName.empty()) {
cf.clear(uint(encodeBlocks.size()));
cf.setShift(_shift);
for (auto &it:finalBlocks) {
cf.getCombineData().push_back(std::get<1>(it));
cf.getHeader().push_back(std::get<0>(it)->GetHeader());
}
cf.writeFile(cacheFileName);
}
}
const ArithEncoder::EncoderType encodeModeTranslation[]={
ArithEncoder::EncoderType::Standard,
ArithEncoder::EncoderType::SingleAsm,
ArithEncoder::EncoderType::MultiAsm,
ArithEncoder::EncoderType::SingleAsm,
ArithEncoder::EncoderType::MultiAsm};
ArithEncoder ecClean(ArithEncoder::EncoderType::Standard);
ArithEncoder ecAsm(encodeModeTranslation[int(_mode)]);
_header.clear();
for (auto &it:finalBlocks) {
std::get<0>(it)->Encode(std::get<2>(it),ecClean);
std::get<0>(it)->Encode(std::get<2>(it),ecAsm);
_header.push_back(std::get<0>(it)->GetHeader());
}
ecClean.Finalize();
ecAsm.Finalize();
_dest=ecClean.GetDest();
auto tmp1=CreateAsmHeader();
auto tmp2=ecAsm.GetDest();
if (tmp1.size()<4)
{
// should not happen in practice. For now lets pad with 1-3 bytes
_destAsm1.clear();
_destAsm2.clear();
for (size_t i=tmp1.size();i<4;i++) _destAsm2.push_back(0);
_destAsm2.insert(_destAsm2.end(),tmp1.begin(),tmp1.end());
_destAsm2.insert(_destAsm2.end(),tmp2.begin(),tmp2.end());
} else {
_destAsm1.clear();
_destAsm1.insert(_destAsm1.end(),tmp1.begin(),tmp1.end()-4);
_destAsm2.clear();
_destAsm2.insert(_destAsm2.end(),tmp1.end()-4,tmp1.end());
_destAsm2.insert(_destAsm2.end(),tmp2.begin(),tmp2.end());
}
DebugPrint("\n"); //newline after progress bar
INFO("Compression done. Following blocks were created:");
uint i=0,pos=0,totalHLength=0,totalLength=0;
for (auto &it:finalBlocks) {
uint len=std::get<0>(it)->GetRawLength();
totalLength+=len;
uint hLen=uint(std::get<0>(it)->GetHeader().size());
totalHLength+=hLen;
if (std::get<0>(it)->GetEstimatedLength()) {
uint cLen=std::get<0>(it)->GetEstimatedLength()-hLen*8;
float ratio=float(cLen+hLen*8)/float(len*8)*100.0f;
INFO("Block%u 0x%08x-0x%08x, (%u+%.1f/%u) bytes, compression ratio %.2f%%, contexts: %s",i++,pos,pos+len-1,
hLen,float(cLen*.125),len,ratio,std::get<0>(it)->PrintModels().c_str());
} else {
INFO("Block%u 0x%08x-0x%08x, (%u) bytes, contexts: %s",i++,pos,pos+len-1,
len,std::get<0>(it)->PrintModels().c_str());
}
pos+=len;
}
if (i>1) totalHLength+=2; // multi block encoder needs a final marker
float ratio=float(totalHLength+_dest.size())/float(totalLength)*100.0f;
INFO("Total (%u+%u/%u), compression ratio %.2f%%",totalHLength,_dest.size(),totalLength,ratio);
INFO("Asm stream total (%u+%u)",_destAsm1.size(),_destAsm2.size());
});
INFO("Encoding stream took %f seconds",float(timeTaken));
}
void StreamCodec::LoadStream(std::vector<u8> singleStream)
{
// not safe in case "evil header" is constructed. Only some basis checks provided
ASSERT(singleStream.size()>12,"Too short file");
ASSERT(!memcmp(singleStream.data(),"ONEKPAQ",7),"oneKpaq header missing");
_mode=static_cast<EncodeMode>(singleStream[7]-'4');
ASSERT(uint(_mode)&&_mode<=EncodeMode::ModeLast,"Unknown mode");
_shift=singleStream[8];
ASSERT(_shift&&_shift<=16,"Wrong shift");
ASSERT(!singleStream[9],"Unknown format");
_header.clear();
uint prevEnd=10;
bool isSingle=_mode!=EncodeMode::Multi&&_mode!=EncodeMode::MultiFast;
while (singleStream[prevEnd]||singleStream[prevEnd+1]) {
uint headerEnd=singleStream[prevEnd+2]+prevEnd;
_header.push_back(std::vector<u8>(singleStream.begin()+prevEnd,singleStream.begin()+headerEnd));
prevEnd=headerEnd;
if (isSingle) break;
}
//INFO("prevEnd=%u isSingle=%u", prevEnd, isSingle);
_dest=std::vector<u8>(singleStream.begin()+prevEnd+(isSingle?0:2),singleStream.end());
}
std::vector<u8> StreamCodec::Decode()
{
// now it is simple
std::vector<u8> ret;
auto timeTaken=Timer([&]() {
ArithDecoder dc(_dest,ArithDecoder::DecoderType::Standard);
for (auto &it:_header) {
BlockCodec bc(StreamModetoBlockCodecType(_mode),_shift);
auto block=bc.Decode(it,dc);
ret.insert(ret.end(),block.begin(),block.end());
}
});
INFO("Decoding stream took %f seconds",float(timeTaken));
return ret;
}
std::vector<u8> StreamCodec::DecodeAsmStream()
{
// This method is only for testing!
const ArithDecoder::DecoderType decodeModeTranslation[]={
ArithDecoder::DecoderType::Standard,
ArithDecoder::DecoderType::SingleAsm,
ArithDecoder::DecoderType::MultiAsm,
ArithDecoder::DecoderType::SingleAsm,
ArithDecoder::DecoderType::MultiAsm};
std::vector<u8> ret;
std::vector<u8> src;
src.insert(src.end(),_destAsm2.begin()+4,_destAsm2.end());
auto timeTaken=Timer([&]() {
ArithDecoder dc(src,decodeModeTranslation[int(_mode)]);
for (auto &it:_header) {
BlockCodec bc(StreamModetoBlockCodecType(_mode),_shift);
auto block=bc.Decode(it,dc);
ret.insert(ret.end(),block.begin(),block.end());
}
});
INFO("Decoding stream took %f seconds",float(timeTaken));
return ret;
}