-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcopy_Atten.py
126 lines (123 loc) · 6.79 KB
/
copy_Atten.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
import torch.nn.utils as utils
import matplotlib as mpl
import matplotlib.pyplot as plt
from random import sample
from event_tensors.glove_utils import Glove
import itertools
import torch.nn.functional as F
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from models_func import BiLSTM_CRF,getsentence,form_batch,prepare_sequence,transfrom_sentence_to_embed,acc,get_label_stat
import pickle
torch.manual_seed(1)
if __name__== '__main__':
glove = Glove('glove.6B.100d.ext.txt')
data = pd.read_csv("GMB_dataset.txt", sep="\t", header=None, encoding="latin1")
data.columns = data.iloc[0]
START_TAG = "<START>"
STOP_TAG = "<STOP>"
data = data[1:]
data.columns = ['Index','Sentence #','Word','POS','Tag']
data = data.reset_index(drop=True)
data[~data['Tag'].isin(['O'])]
sample_num=1
acc_step=8
getter = getsentence(data)
sentences = getter.sentences
EMBEDDING_DIM = 150
HIDDEN_DIM = 256
loss=[]
# Make up some training data
word_to_ix = {}
for long_sentence in sentences:
for word in long_sentence:
if word[0] not in word_to_ix:
word_to_ix[word[0]] = len(word_to_ix)
syntax_to_ix = {}
for long_sentence in sentences:
for word in long_sentence:
if word[1] not in syntax_to_ix:
syntax_to_ix[word[1]] = len(syntax_to_ix)
train_data=pickle.load(open('train_data','rb'))
val_data=pickle.load(open('val_data','rb'))
test_data=pickle.load(open('test_data','rb'))
syntax_embeds = nn.Embedding(len(syntax_to_ix),50)
tag_to_ix = {'B-geo':0,'B-gpe':1,'B-tim':2,'B-org':3,'I-geo':4,'B-per':5,'I-per':6,'I-org':7,'B-nat':8,'I-tim':9,'I-gpe':10,'I-nat':11,'B-art':12,'I-art':13,'B-eve':14,'I-eve':15,'O':16,START_TAG: 17, STOP_TAG: 18}
model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM).cuda(0)
optimizer = optim.Adam(itertools.chain(model.parameters(),syntax_embeds.parameters()), lr=0.01, weight_decay=1e-4)
for epoch in range(10):
print(epoch)
batch_index=0
for time in range(len(train_data)):
batched_data,batch_index=form_batch(train_data,sample_num,batch_index)
targets = prepare_sequence(batched_data,tag_to_ix,'tag')
batch_word_embedding,sentence_length=transfrom_sentence_to_embed(batched_data,syntax_to_ix,glove,syntax_embeds,targets)
loss = model.neg_log_likelihood(batch_word_embedding, targets)/acc_step
loss.backward()
if time%acc_step==0:
optimizer.step()
optimizer.zero_grad()
if time % 100==0:
val_right_num=0
val_total_num=0
test_right_num=0
test_total_num=0
tag_to_ix_val={'B-geo':0,'B-gpe':0,'B-tim':0,'B-org':0,'I-geo':0,'B-per':0,'I-per':0,'I-org':0,'B-nat':0,'I-tim':0,'I-gpe':0,'I-nat':0,'B-art':0,'I-art':0,'B-eve':0,'I-eve':0,'O':0}
tag_to_ix_test={'B-geo':0,'B-gpe':0,'B-tim':0,'B-org':0,'I-geo':0,'B-per':0,'I-per':0,'I-org':0,'B-nat':0,'I-tim':0,'I-gpe':0,'I-nat':0,'B-art':0,'I-art':0,'B-eve':0,'I-eve':0,'O':0}
val_stat=get_label_stat(val_data)
test_stat=get_label_stat(test_data)
val_predict_list=[]
val_targets_list=[]
test_predict_list=[]
test_targets_list=[]
with torch.no_grad():
batch_index=0
for time_val in range(len(val_data)):
batched_data,batch_index=form_batch(val_data,sample_num,batch_index)
batch_word_embedding,sentence_length=transfrom_sentence_to_embed(batched_data,syntax_to_ix,glove,syntax_embeds,targets=None)
targets = prepare_sequence(batched_data,tag_to_ix,'tag')
predict_output=model(batch_word_embedding)
val_predict_list.extend(predict_output[1])
val_targets_list.extend(targets[0].tolist())
right_predicit_num,total_num,tag_to_ix_val=acc(predict_output,targets,tag_to_ix_val)
val_right_num=val_right_num+right_predicit_num
val_total_num=val_total_num+total_num
with torch.no_grad():
batch_index=0
for time_test in range(len(test_data)):
batched_data,batch_index=form_batch(test_data,sample_num,batch_index)
batch_word_embedding,sentence_length=transfrom_sentence_to_embed(batched_data,syntax_to_ix,glove,syntax_embeds,targets=None)
targets = prepare_sequence(batched_data,tag_to_ix,'tag')
predict_output=model(batch_word_embedding)
test_predict_list.extend(predict_output[1])
test_targets_list.extend(targets[0].tolist())
right_predicit_num,total_num,tag_to_ix_test=acc(predict_output,targets,tag_to_ix_test)
test_right_num=test_right_num+right_predicit_num
test_total_num=test_total_num+total_num
dict_key=list(tag_to_ix_val.keys())
print('total right percentage in val set',int(val_right_num)/int(val_total_num))
print('precisison macro',precision_score(val_targets_list,val_predict_list,average='macro'))
print('recal macro',recall_score(val_targets_list,val_predict_list,average='macro'))
print('f1',f1_score(val_targets_list,val_predict_list,average='macro'))
for dkey in dict_key:
try:
print(dkey,'percentage',tag_to_ix_val[dkey]/val_stat[dkey])
except:
print(dkey,'in stat is 0')
print('total right percentage in test set',int(test_right_num)/int(test_total_num))
print('precisison macro',precision_score(test_targets_list,test_predict_list,average='macro'))
print('recal macro',recall_score(test_targets_list,test_predict_list,average='macro'))
print('f1',f1_score(test_targets_list,test_predict_list,average='macro'))
for dkey in dict_key:
try:
print(dkey,'percentage',tag_to_ix_test[dkey]/test_stat[dkey])
except:
print(dkey,'in stat is 0')
torch.save(model,'bilistm.pkl')
torch.save(syntax_embeds,'syntax_embeds.pkl')