-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathexp.py
173 lines (135 loc) · 7.35 KB
/
exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from __future__ import print_function, division
from keras.layers import Input, Dense, Activation
from keras.layers.merge import Maximum, Concatenate
from keras.models import Model
from keras.optimizers import Adam
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
class MalGAN():
def __init__(self):
self.apifeature_dims = 128
self.z_dims = 20 #could try 20,malware想欺骗分类器就得增加api调用
#z噪声设置的越大,可能增加的api数量就会越多
self.hide_layers = 256
self.generator_layers = [self.apifeature_dims+self.z_dims, self.hide_layers, self.apifeature_dims]
self.substitute_detector_layers = [self.apifeature_dims, self.hide_layers, 1]
self.blackbox = 'MLP'
optimizer = Adam(lr=0.001)
# Build and Train blackbox_detector
self.blackbox_detector = self.build_blackbox_detector()
# Build and compile the substitute_detector
self.substitute_detector = self.build_substitute_detector()
self.substitute_detector.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes malware and noise as input and generates adversarial malware examples
example = Input(shape=(self.apifeature_dims,))
noise = Input(shape=(self.z_dims,))
input = [example, noise]
malware_examples = self.generator(input)
# For the combined model we will only train the generator
self.substitute_detector.trainable = False
# The discriminator takes generated images as input and determines validity
validity = self.substitute_detector(malware_examples)
# The combined model (stacked generator and substitute_detector)
# Trains the generator to fool the discriminator
self.combined = Model(input, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_blackbox_detector(self):
if self.blackbox is 'MLP':
blackbox_detector = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,
solver='sgd', verbose=0, tol=1e-4, random_state=1,
learning_rate_init=.1)
return blackbox_detector
def build_generator(self):
example = Input(shape=(self.apifeature_dims,))
noise = Input(shape=(self.z_dims,))
x = Concatenate(axis=1)([example, noise])
for dim in self.generator_layers[1:]:
x = Dense(dim)(x)
x = Activation(activation='sigmoid')(x)
x = Maximum()([example, x])
generator = Model([example, noise], x, name='generator')
generator.summary()
return generator
def build_substitute_detector(self):
input = Input(shape=(self.substitute_detector_layers[0],))
x = input
for dim in self.substitute_detector_layers[1:]:
x = Dense(dim)(x)
x = Activation(activation='sigmoid')(x)
substitute_detector = Model(input, x, name='substitute_detector')
substitute_detector.summary()
return substitute_detector
def load_data(self, filename):
data = np.load(filename)
xmal, ymal, xben, yben = data['xmal'], data['ymal'], data['xben'], data['yben']
return (xmal, ymal), (xben, yben)
def train(self, epochs, batch_size=32):
# Load the dataset
(xmal, ymal), (xben, yben) = self.load_data('data.npz')
xtrain_mal, xtest_mal, ytrain_mal, ytest_mal = train_test_split(xmal, ymal, test_size=0.20)
xtrain_ben, xtest_ben, ytrain_ben, ytest_ben = train_test_split(xben, yben, test_size=0.20)
# Train blackbox_detctor
self.blackbox_detector.fit(np.concatenate([xmal, xben]),
np.concatenate([ymal, yben]))
ytrain_ben_blackbox = self.blackbox_detector.predict(xtrain_ben)
Original_Train_TRR = self.blackbox_detector.score(xtrain_mal, ytrain_mal)
Original_Test_TRR = self.blackbox_detector.score(xtest_mal, ytest_mal)
Train_TRR, Test_TRR = [], []
for epoch in range(epochs):
for step in range(1):#range(xtrain_mal.shape[0] // batch_size):
# ---------------------
# Train substitute_detector
# ---------------------
# Select a random batch of malware examples
idx = np.random.randint(0, xtrain_mal.shape[0], batch_size)
xmal_batch = xtrain_mal[idx]
noise = np.random.uniform(0, 1, (batch_size, self.z_dims))
idx = np.random.randint(0, xmal_batch.shape[0], batch_size)
xben_batch = xtrain_ben[idx]
yben_batch = ytrain_ben_blackbox[idx]
# Generate a batch of new malware examples
gen_examples = self.generator.predict([xmal_batch, noise])
ymal_batch = self.blackbox_detector.predict(np.ones(gen_examples.shape)*(gen_examples > 0.5))
# Train the substitute_detector
d_loss_real = self.substitute_detector.train_on_batch(gen_examples, ymal_batch)
d_loss_fake = self.substitute_detector.train_on_batch(xben_batch, yben_batch)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
idx = np.random.randint(0, xtrain_mal.shape[0], batch_size)
xmal_batch = xtrain_mal[idx]
noise = np.random.uniform(0, 1, (batch_size, self.z_dims))
# Train the generator
g_loss = self.combined.train_on_batch([xmal_batch, noise], np.zeros((batch_size, 1)))
# Compute Train TRR
noise = np.random.uniform(0, 1, (xtrain_mal.shape[0], self.z_dims))
gen_examples = self.generator.predict([xtrain_mal, noise])
TRR = self.blackbox_detector.score(np.ones(gen_examples.shape) * (gen_examples > 0.5), ytrain_mal)
Train_TRR.append(TRR)
# Compute Test TRR
noise = np.random.uniform(0, 1, (xtest_mal.shape[0], self.z_dims))
gen_examples = self.generator.predict([xtest_mal, noise])
TRR = self.blackbox_detector.score(np.ones(gen_examples.shape) * (gen_examples > 0.5), ytest_mal)
Test_TRR.append(TRR)
# Plot the progress
print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
print('Original_Train_TRR: {0}, Adver_Train_TRR: {1}'.format(Original_Train_TRR, Train_TRR[-1]))
print('Original_Test_TRR: {0}, Adver_Test_TRR: {1}'.format(Original_Test_TRR, Test_TRR[-1]))
# Plot TRR
plt.figure()
plt.plot(range(epochs), Train_TRR, c='r', label='Training Set', linewidth=2)
plt.plot(range(epochs), Test_TRR, c='g', linestyle='--', label='Validation Set', linewidth=2)
plt.xlabel("Epoch")
plt.ylabel("TRR")
plt.legend()
plt.show()
if __name__ == '__main__':
malgan = MalGAN()
malgan.train(epochs=1000, batch_size=128)