-
Notifications
You must be signed in to change notification settings - Fork 178
/
streamlit_app.py
149 lines (134 loc) · 5.18 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from annotated_text import annotated_text
from bs4 import BeautifulSoup
from gramformer import Gramformer
import streamlit as st
import pandas as pd
import torch
import math
import re
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(1212)
class GramformerDemo:
def __init__(self):
st.set_page_config(
page_title="Gramformer Demo",
initial_sidebar_state="expanded",
layout="wide"
)
self.model_map = {
'Corrector': 1,
'Detector - coming soon': 2
}
self.examples = [
"what be the reason for everyone leave the comapny",
"He are moving here.",
"I am doing fine. How is you?",
"How is they?",
"Matt like fish",
"the collection of letters was original used by the ancient Romans",
"We enjoys horror movies",
"Anna and Mike is going skiing",
"I walk to the store and I bought milk",
" We all eat the fish and then made dessert",
"I will eat fish for dinner and drink milk",
]
@st.cache(show_spinner=False, suppress_st_warning=True, allow_output_mutation=True)
def load_gf(self, model: int):
"""
Load Gramformer model
"""
gf = Gramformer(models=model, use_gpu=False)
return gf
def show_highlights(self, gf: object, input_text: str, corrected_sentence: str):
"""
To show highlights
"""
try:
strikeout = lambda x: '\u0336'.join(x) + '\u0336'
highlight_text = gf.highlight(input_text, corrected_sentence)
color_map = {'d':'#faa', 'a':'#afa', 'c':'#fea'}
tokens = re.split(r'(<[dac]\s.*?<\/[dac]>)', highlight_text)
annotations = []
for token in tokens:
soup = BeautifulSoup(token, 'html.parser')
tags = soup.findAll()
if tags:
_tag = tags[0].name
_type = tags[0]['type']
_text = tags[0]['edit']
_color = color_map[_tag]
if _tag == 'd':
_text = strikeout(tags[0].text)
annotations.append((_text, _type, _color))
else:
annotations.append(token)
args = {
'height': 45*(math.ceil(len(highlight_text)/100)),
'scrolling': True
}
annotated_text(*annotations, **args)
except Exception as e:
st.error('Some error occured!')
st.stop()
def show_edits(self, gf: object, input_text: str, corrected_sentence: str):
"""
To show edits
"""
try:
edits = gf.get_edits(input_text, corrected_sentence)
df = pd.DataFrame(edits, columns=['type','original word', 'original start', 'original end', 'correct word', 'correct start', 'correct end'])
df = df.set_index('type')
st.table(df)
except Exception as e:
st.error('Some error occured!')
st.stop()
def main(self):
github_repo = 'https://github.com/PrithivirajDamodaran/Gramformer'
st.title("Gramformer")
st.write(f'GitHub Link - [{github_repo}]({github_repo})')
st.markdown('A framework for detecting, highlighting and correcting grammatical errors on natural language text')
model_type = st.sidebar.selectbox(
label='Choose Model',
options=list(self.model_map.keys())
)
if model_type == 'Corrector':
max_candidates = st.sidebar.number_input(
label='Max candidates',
min_value=1,
max_value=10,
value=1
)
else:
# NOTE:
st.warning('TO BE IMPLEMENTED !!')
st.stop()
with st.spinner('Loading model..'):
gf = self.load_gf(self.model_map[model_type])
input_text = st.selectbox(
label="Choose an example",
options=self.examples
)
input_text = st.text_input(
label="Input text",
value=input_text
)
if input_text.strip():
results = gf.correct(input_text, max_candidates=max_candidates)
corrected_sentence, score = results[0]
st.markdown(f'#### Output:')
st.write('')
st.success(corrected_sentence)
exp1 = st.beta_expander(label='Show highlights', expanded=True)
with exp1:
self.show_highlights(gf, input_text, corrected_sentence)
exp2 = st.beta_expander(label='Show edits')
with exp2:
self.show_edits(gf, input_text, corrected_sentence)
else:
st.warning("Please select/enter text to proceed")
if __name__ == "__main__":
obj = GramformerDemo()
obj.main()