-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKeynesianCrossDiagram.nbp
1293 lines (1265 loc) · 62.2 KB
/
KeynesianCrossDiagram.nbp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 6.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 63447, 1283]
NotebookOptionsPosition[ 36412, 697]
NotebookOutlinePosition[ 62847, 1267]
CellTagsIndexPosition[ 62736, 1261]
WindowFrame->Normal
ContainsDynamic->True *)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
GraphicsBox[RasterBox[CompressedData["
1:eJztvXlwHOl1J6iIjdg/17PjWWsVli3J47Fle2JiY+yZkQjUkVmFiwTBs3mB
gLtbh8dud7fGjpjxaDQzG16rLWt8qKXWQRD3VagD4H3jrAKqUCfOAkDiItkk
CPAAiYNkk0RV7TsyE1mFKlwE2GArO75GfPXLl+9735FZ9f343vu+8vb7e9/+
3z73uc/9Jvxv/N8/9zmsi8cHoZhLrkLZjLqpeMB0/BoUxIuuYqV4GK4aigeF
44Om4iGSD0NFvhQW6F74KBYPgWTGcbwEoHBsCLSJJQOS/qJB1Fw8JBQN8O1Q
ARm4SyABoTgMINwuUB0qdGMY/4IlxUPGoiFuK6OI7mU9YNKxq6BcJPNQIZuH
8gNQ4F6QR/0kz0Zy11B50VVWjh+5QnWULLpqLh4RqY/wMbNseGdx/77j/pzS
MHcW2sXOlqAMazPhANIQsRIUw2KSxlYaNDPJSx9LR1g48/gIIiXDJDMiyZQM
Zx5flMdKyQhrVuwUSqk5nrviAUk/dRP0gAYcGbCkhC4VDSqt8AgjWCINEV1S
zS9PKw8LrQexpB8nrnSYh477xfMllA5mFl+FCuPQnMpm1JlxfECkwaF2w7h4
aJAle0qGcQEUD6ElJQPC8avSuuIpK77GdmJDjJcOsp3yuuX5GuZx4H5J9xZJ
44MV6GPpIDTByw+FaXxwbZMNkgzjOIZhGH+WYVykFaKM29y9b8ZmC1rCPzSX
8RK6ZizBcZPGmRdDkbQqsAlc7Vel54sGXFEo2z/Ma55X0WY/71pdq2t1ra7V
tfrrWj82Yiq6AQUqwrGr4rEx8Rc3toptWl2rb2bdVNwvFveYcI8A+4huqJul
zUgf1UdeEjeV9MIl3pIAuCgPdRkXjncn4LKeRPm14tAvKIzL+6ke3jvQ3pNs
LhmU7j0+yPsmFT68JfGwvHdW2Q913KYt6de68CXtjghF/byf5T07jmEJbjfW
ivPeStn7w/Izl8hb6WQ4b20UGkHaB6H8Gta5KcU+6HXBX8l7YGiDcGnvjGvm
F8PCL0bpi/U6fLfi9yy/Z4gzWV9/lVt4MSgfNwqnEpZWKZM5VDKOD8GWHGki
2uCbi8LMMxCnMcD0EZTMYmWDH+a/Eg1VtLhomb5AWun4EFEuQ0pFYoSKJepD
YlGKBpH6KJL4GRV1IxupPCYkwHSBUDQAFiqkGd8uPUFkvKrpIWUElNtBRiCu
A9mG4n6oZxT1vVl39jtlNQXWS2APCEhkC73Gidwb4ObkrsUV9Xgi6VcclpZQ
EZstCYBmanGIR4nkB+TZwbu4RbiKApLYoDS2xdd49JAmKpL4RpkGlGYclIPl
i3NdLE0Kc1A8vyyJJCFNtGKbQhJKppIAdoFn7bj0gmLKTu7aEN8oT4G0JNCM
Y1eXjgyyakXXlF4rV7mPAi0eHh++HReS3AVxcQyHVAKDtH7iWuGRkdYtrWcm
XRcblQeBBxZJOdkMtSrAywMfdl//y9hs/s/cP4N1AqCRCdsSXH6gR1A/bkWL
XY577mjB8JLgv2C8MoCb+rxruIZruIZruIa/jrj8Y1XaPS3+094Ws1PDNXzT
1v8QPwII8j+/Lu4awso/Rq8Pp78Dckn4uT6wKC9Lyn8T8KG14myMul1VGZAv
DakkXydc6Zc8CGF5ZhP6O7BWXF4Y4aXy6rWUsJxWjyfMhVpyyTTFaUtYvakU
Ll3n6qWy9fFUZan8ZuMvY3/8ipJZF4WTeYliCwibWux+0Q5/oe43QrH6DFav
sa4T/0Ld5hOsfiqIi3U+Q12nUEcyANb5jCAAfy1eQ61bV+vGvxaPESudxjqf
aPHq4RLcUtupr3ELdFUPl+ivvsaDt0AdK51G6S+KIQh30e1cMdR4oOiq3Xqq
KAU06Go6EKx2p7MBoASUkw061sm21XjSQYyVgwDohF5gl/3SODiCInTHHjA4
APEJjlBmg3PP6YbtJzt31wVFELCEdDYeq4AojZ4yjPA3aIB75atKEeyLYiKP
Nt8itavgflGSIWOkJkCnX7QG9HZFUmoC7VTa5UqdVDEoiA1BlaRsuVQP6mSd
OPuKWkfQiJWgqFZOvRMUk+yLqgzqniqjYacOghK+kcwgbXLBS3LflaFzBJMN
rLxQseLXq3H1X1zAsp1Lb4+7pKrY5L/Y6yD3RRpJLmCSlTSzvMNvaAlnxmYL
wyN5kvEwdNwFmsS6xWUgqJozKDbIzUnTagnobdJwGeOs1YpWtKIVrWhFK4lF
XFI+dZO0opVXUJaufFz8tJvYAJyb4F+8KpAr5viPQvzfjcFpX5DQbtJnPPk4
bG38la8Webux+HHNuBiPiynkl+AJZrz6vmtlI8s613Cdz4g0Ed27OXVDnQ/e
VyZ4oRGJZLB4kQuqRKZIZ/HCi86EdBCSQliqOtLgEuBQqlneg38rXcbyNn1V
u6GqQ1fZnl7drmPWCBEXfAQBfaVTV+HUVbqN1R1GrLvSqpzGKpe+vF0Pt9R0
IF5BMlXtQo1bgI/VbmrabQD58rZ0aKXCaaho1Ve0pcO99JH0uLDpMpcOWgE9
ULg5bJ2bdumrO8SaDj3e7kQjQTl3lt7VOCa1PpEfNBiQWr/BEcg479x/oSq3
oXW/I5SJPJLXaPGbHEHR4Rfs/kzVV4Agv/CxsqROMj7BGtDzR0sAcVToN8p1
M/GERuR5CLcSnYiGBfmjTIb4BEIE/pZhhXw7TCV8xcBV6AvMGmhGGZ/UQUCI
bJTYJ2QgvRJ3h4QksZRIv/hEWg8C6YFx0Fm9oiXI60T6UqO6gU21ePVIeIJA
kNeqge8F3CZ/CUpcKH39sXIeExhkpBB9Jr63lseKjCRq1AR2ggHUL9TPbcnz
hfdCx7GOMkbUL9/LTbA9aIPPhOxrp4HsFBfbCpjReB/aj3W/kccHh9GH40Pj
xjoNrLPGb2wOZ0VnC3vHcmt8BugCs3PMhcrjY2Qb6khPrTRHIrelsk36SWCV
xlaybZOfd62u1bW6VtfqWv01rUu7IfjxBgXrQcOWsU2ra/VNrPMujLcYXJef
BUGpo4eAV9qArBXnf/3n37G876N2Wb+E03Mn2IMm3ivxM2gPSjjLrxWnHaX6
uZY2OAoOzcnPe5x8Kj1bDedxk+eRvT70Sn/XjVNbelvc+1CMr4svX+f1xvsg
FS+hxo28fuS6WV63rMe8mrUttyW8pvjrW1f6ouzNJfekgMIPGGVOQ1DLrFjf
fPt5v4+lxkNsT3s6/EWiyYVOSuTFhIwWlKoOXUUrUklMK8FHJILadYCUtepL
WvUO36GLve+f734XPoKS6nZDeZu+rBWpp4q29JLm9NKW9Mo2JJTKW3SlTenl
rWkVrSgA8sxogQAUaB3UIhVGxFRVG+FNaedD37G53yhpTCtuSrN05Di8+0he
B8orWlAGVFU79WQPFmwL9evL2wzEjBmOkxjgNR1oP7yTiRrCB7PWZ1beOfCx
IZRxtvNga0nO6YuHTgd22vx6npd6f1Z9MNvWnmN1ZzoCGXiLD6khiash3kny
p/ItTjfxVIIyuZaAcLIro20wuzmcc647o0723mFCieSROWT3njrJBUhZV5J7
D6ryisS9CM3hzJaBbNCJt5MfHfv81PqRPyG/IHoHyn5ctAaQyHIN5DQNZJ3p
NtvoEskb2PnKERSb+zIb+7PtEqenvEtx2aCXWsBcHzS39Odc6ctyIJdlYJ7N
htwU6oHKuR7oY9aZrkxbgPkxsscn1fkZaQ1nt/RnNeAXIvaxhtYkO6Gxneyb
VIvtGiXnLuLE2gZyoIDxtew9GBJp7oxsPL/nma/jOtmMfYSP7OtVi69cbkuA
drELIZHtr/HpYUih1IdMxGXRmHuNTQOZsdn8ntEdYFiVT8d6YEAu92bDhEJf
SKeoPPtSHwd3wDjI/7oktxsQ2gYAz2QZh38LvdO0ulbX6lpdq2v1rVQXqa7s
40TCX8G/82p1rf7p19WclbqOoSWqOhTecq4VX6pfwYmzEqHEy+iZ+1py7/px
9o5Q1RP4ajEV3/U64KnsR5y4rw3A5T2sMak968Jx7cnzkmC/Glc4urj3sz2o
5u62xHP0+tcXOaV4XnHNuJqHVPNU6nZT4Uo9FW6Xo5A2qcisi1DXaah1C9Xt
aZVtBrvnQCwWOxt6qwrfcnr0sOowVjmNFW3b2ge//2zhMdSRwmo3EtOFDlGn
A29NPgzForGHj4ehPH/xuHu8FGkrp6G8RXdvbjgWicboP7i9Y+gD59AH/Jn+
RuY/uXsm+Gb39bKYJIUXnkfmazrQdQr01zpz7s+PgCRcCY2VVbfmXL1zFurX
Ji84PAdu3G8HefnWiH/kp6eDb0ejUUl/NPZkYRb6BSZJTUZBUXT03nny5zHJ
0XBmh1+sD5j4Xxbqg9lnvEecxTkXTx0+FdxbF8qww1V/VkMw92TTnpPnt0Od
R0+OrRPbBrOjcwWxWSj5zx4enpzc3zOedyYkcPjhYiifX+wdy43O5YMYlpmj
8w8OnO/Ohku913fB7aCHna9AbWy2cHJyLy8e+Ng7lgdI20AO8VrIegWv5T59
dBjuisweBW0D43n2kLR4WgayoJX+0Tyk18jI1oEsuL1nPBeuBoa3R2cLYzNH
4F4we2rq4ImQqAS+tYazQS0ZWQB16Agoh9uVLsNfMiafbs+Hzp7rzYzNFABo
l2X6R3eDZi7cOlRIwEDuYUJwZOezh0doxFBJ//XdSgydayCbhW2SPzN2B8TI
eCEwnEdDLbV+d/LgyS6T8sgoFRh50AMjjHfhcJmVYEZ2gYORlFsR7KrZhFF9
Pn0EbsQymx++sUsxDMdwpqBnbDeSjRhRKDSGMx/ePcJTz3+hOSk2M2gC5ZIq
ugpTz3rA4PkHB2HWwH42wLbJD7tWtKIVrWhFK69psS0pSnS/VrTy2S+U54T/
sZsRynnCPzWZyxWVnaZt7TjpN8r6DSr9SjSZFKUi60nEFYUbgqcahMRKKoEt
gscXxdtBPf6qsgl43FC/LM4bH9WlBHnV2kj2UV0+/Qfq5Uqqfr3u5TXqL3kf
oUdKTYe+yimUNum9wx/GYpHBmzbON4Xhe+3p5S360hbd5HQvXGrq/x66NjmR
7AL8pPetZwuPY9FY++D3kc5ypUEFPo5OXChrNsBdZc26K71/xVRVjSunDB2x
dNXObKabmsL/pcJpLHduK2/R1biymIS63PeOFFTYrgN8+M45kPzkxaxn6KM7
04Fnz+eJy4qM329rH/wA9J8Pvcc31rlzkTdr1dNdFwC5MxNC5y5AWtOgUTbD
Ofg9UI5xbXIInt2bYXdlnfDmNgQybV3mE8EdTZ1v9x83u6v2XujOR7erUM5p
/77TzUebyrJOXd5T3xXHX9kldqhgbvrAnalDE1N7mZmZe3D4Un+GLSBnuPIJ
PWO7Y3OFtyf3dV7NbR3ICF7Lm5zcf6ILf4YRTVToDCOXxfFoyCzd2a9MVv8o
UkZIcAXwpeHs3w4fp6cOu6/mugZyPr69j8gT5HzqggLogdsXuRTytgIBZEvA
jPHcsVu7QUPrUOYNuHGmYOTWnrogfX8FDDdu7wWke3x3ezj7XG9m71huZK4A
brdTeiiQaerbDsof3j3UMbTDNZD98e39xHdh60QAYnPPHx6E7rRf2+EZ2oHj
M5gTmznSPZ7HqbHQmJkjD+4fcF9FN6qbE3tiM4XdYzuY62sb2BGdOwym1slJ
sVrD2ZLxARxDMB4GHJpGU2fB+H3yKMW9yXlSekd3g04pzVcQeWY7/Qwg/ipf
5tyk4E2ivAof3DvkHcqBMYSuIWFFvBkowauzhWAAzZH+dCgDJvrZg8M91/eA
hW2DmYNju3EQaLqJ4iu4f/cw9XEHTF9wZCf/PKBLh2/fOgBNXA5n46j6l34H
aUUrWtGKVrSiFa1oRSu0kaRfsArJo1yS6Fy/ksNqEedfvAmqUuG2uE2rdFWd
v9eWbD+baoe7Sjxhj2zfcDyF/SnxVdfXwXss5QRWaislT6XKn6zWs2G4ut3V
2LNGXFCD8WOSakO09fGtY8mniS/1D2TvoJfHuUXEPejuVduJCayKm75W2pSO
7lKxyLOFxxWt+mqXgCF+zemAW11vkP/SwrXJCyBc0pxe0pgG+MwnE0glTbVX
ozuWsbRFV9KoI3epWFv/Xxddho9p54LvsPcURvO16I83biu+rGfG6XzoPbgF
FJa36ADHFqJROb0VBRu26eeeTgLuGfpx8ZVtvzi/rbn/r6Ox2PyTydIrGIfI
5kVJP8YSOnUlTdCXbaGxkmg01jVeCqaWt6Vj0OLFNHLJilzq+UtMluXRybGf
osWddfL89tNn951yHWwI7D7ds7vF9a3p8j/8+Kdfbe36s5Oh3FO+/eeuvOUp
yrlk3XsmuJeSLwkWyitloXcgEiwzR/tHdzvg6yOEye27R3fFZgufTx+50pdF
+box3OzJw8P37+1zBEyUEcvE3lnoPuQzdY/uQTcnpKekN0l0tnBq6g05nlTo
GttJ/ldE8vgMD6cOgvITPQZQVePTW4Li1J39sdmCEyEzfMG1DSLh0z2200bv
BJjlpt4MpmswZ5TXTDySCdP1k6pnD4+Qvyg2dGfqUGT2aJ1Xzz5jXaO50LWW
gWyKScf1gyzczNGOwSzMsR/EOMfbt/az/5WNZKC5yFzB5OT+Gp/B5kWHK3aF
6r2K9oDB01MHXzwsaOjG8G2wweJLvzexH25xYFyk0YmDWdA9nFfXKdQHMD9b
S38W81cYZw2N+kT6hwz0X50m4x1BJXZbWudgQxtRdl0jeRiWSN/4dCiAgeMN
m/uQAASdDp+ZomXx2/z+XdB22EGDg+yuVz858QaM2+lQBtSb+jNjc4U9oztr
6JliJzT34A70VCSnMjJYelF/Mn14bvrA6S5KTYY24zg4guiMDUP6fO4IjAnF
LQoUt7iJz7uGa7iGa7iGa7iGa7iGv454lQczAzMOlRqPJFPdKdZ6JBIGZKo7
JadElrfLMiviUAE97CAE9ThcifXziHJdrPZiJhlZjyzvXycu6V9sa+PwVPan
wC3exfhKOT5utbiST8y2mEMs0Z516Oe6HDPIsZymJetEyktWs5iv7KXwVPo3
D1/kJQjfuPxjyfW/PL40XtKWMp79tcctqvjQ1eEbNs4J61NpFx5baA7ehGUt
xuNX9HXO/Rxk98mL2ebwd6tc+tJmA/FUaX3X62KxyPMXj58uPCnFBFb641fS
r/T+FbtRNfb9VSVmzUL+qvjKtsB4Gfo+Peg7dmlbSZP+XPBdZqswHVYrJrAq
uvQ1Rs4F3wEQHbfa0kEhR/hVuwRMikX5r0Dt5HQA0JF7zqLLaT+/kH7O9w58
vP0oBIbBLUh/taZFYgvIX2EqLUxyVdyo6xovjcSi8Jf4MXQhK7ry9SjxY5d6
/hP6d3l0zDnAgFiDOSfb9jjL8lqLci62vN3c8+2OS3/yuOJfPfvJr7af+daV
4J9cuPIn/T8xDH+Yfsnz7YZQjs2fafebHSGzBbPf48PYivGD+T2jzBdRhje/
sXcMI90mJw/wnGIM3Xxh99hOB6XbsgTYmxS9nqw+Q/c4Btw5w9lWv+RlGsX4
wf0Kf9U3gvxVS38W8k5+XWz+6M0J9DuqCeA5j/ZAFtIpc4cbwxl1QbEFPYUK
ZHtwruHGyOyR3uu7oF5DucrrQpgEzBEU5x4cjM0U4ErwojAyNvOFVV6jhei1
0PBODCQczEHuqNMAMj2jO2Kz+Y3hTPxuDQiOgKl9UHLuqgtKuaTA1Kk7B2q8
JqR6QgLyaTNIJeE6DBois0ev396Hnm9+6Z0MpsZmjjYNZIFJTL51jWKadH4v
NfdnIP1F/leYOx3NxiGtD4hz0wdA2BZI5K+gMH/VPZLLeQ6ltjoxaNSKydhz
QGff+E7CDdR3MDv/xu19lBsNZxbA3uG82MwR6D7INPcRCzcGCvG1PzF54NnD
I9XEQfG/i8FEwNcodBDXw2zhAPKHONEWXzoMnfR9AXM9khubK2wNb8fB8XC0
o+EVvG81XMM1XMM1XMM1XMM1/DXCU/FXaj4K6lWE29eDG1D/Lz1/lYp32mq4
ZYN4qmX4q03FVecFbInna6PwrcY7fVr8Fa9SVV1dNgC302F2FgoerHDqipvS
PEMfxqKxuaeTA7esw3culLemUa71tOLL+tknd6LRaGisbO7xnZa+/1HenF7S
nBa8Xi4xTnSYIOZ4d+rgUlPPd9HhKhorbUoHteeC71MKrEgZe3ORTvbIutT7
Lh8LWNGGOPtHVTp1dJJgenUHqm3s/x6TXU3d/6Xoctp5/3dAbOJRkDLAG8qd
20qb9JLjVpuODygsb9F3jSKH1n29rELKxAVN61gPNFrt1tdRDm2O1IMH6lRo
9/nL+cM/TBv9wb/z1f9poOHQU8tvLvziV/p/lOY6+37458aZH3zJf+rIxf6C
04GdJ4M7z4b2nfLudPhzHAETxcchpdMznstn81G2cOQl5qYPROcKGvsyYKgH
xpCicQ1ks0yDF5246oIGPu2uZ4TzX2UqXpTwEeMHfZJfJQUYFnD8IDEzhd3X
c+0hIzNIloDeGc6OzB7tG98FrbcN7IzNF/YOb+cc43bploKe0R1IU9MtDnQb
2/7w7qHoXP7ox7t4VQA+ObEP7ESCiPJEIS02cxTzbrGHp19s6s+MzBXcvrVf
PjNRaBvKoYP58hwcpA/Gzxy9O3kQ5SklF8Uz5mN4o09oH8iVg/LkBGJE+MRm
3sTQvKDBGeZkWTiYbBUzWhS4R49VEOzMALHpqYOAj328R17ecYtciR9kfNE3
NYhUElyNcP4rCiqsC4pNsjz6UNGJkNaAvpUiMXuv78JuUsqsbgzSRMcw6MXk
JAV40jGR7EYFt8AY9ozuBEkwm0cM85XhPBrYEmVI7fQY2jf0udZwDddwDddw
DddwDdfwzxCeEMOVLI4vRSaKNeFa/OBa9SslIXgzVVlRv5LcT7Uels6UFj+4
BfGtY8mniwsbt06S4HyeXW2nvsqlL2vFYMB781djkWj4puOk961Pnj8ta9aV
Nacfv6K/0vWfmaeydhwY+tg+cMtahvzV10NjJeSU9aSibVulU1flFPDMweb0
xu7/yn5cJY3sf4UeU9FoFF2hKJVWSaMuGkWPqYvd75W16iucBlKYznnYK1r1
xF8Zqyl1fJlLZ3MfHL1z7tnz2aGJM56hH0OjUw8l/gpulImpCBrcYiSqKp35
q67xUhRoTYNLoJ/TvF/pedfiMdp8pvpgpiOQ5QiYTgSzTvXkNvYV+k5+a/a7
v/7kv/2L+dJ/tWD5QsTy5ec//M3HP/nt53/za3Mf/X7Q998bA396rvWb568U
+E5ktrXknQjl1gUwMbgzjNnRiSqR4sptPkwh3j+aG310lB2TkICSU6bHZvOj
c/kLc4cilOTKERQ5f3vrYDafuAd/Qezu5Bs2KYe50DuWSwGGOYBwOF7f2B6K
TJRi3p2D25Uc6ez/0ze+k+cdZNgjS0pXHhSv9Geg29VsfgRJmAMnuk3Sq8Mn
TE29QUnXpbMO4ZbI7FFot46zLPqQ7uu/jhmc5u8fHry+Kzy2a+zmroXZo/2j
eShD/4ITmy+cmNqPrmhgoZ8SXsE4jO+xy1nQob8oHDTg8YhBkRmqvhF0GGsP
54BV4TH0jGIqidy3cBiZum8MZ87dOxKbPwqNTk7uVZLPJ6xwifUiuokzt5On
E6UcpFRXmLNrRCLuoK32sJQ3XuHNbAHyZJs5QqnXRSkL/ehuu89YFzLF5g5D
RygT/lHKoo+TG5nPb+nf0Te+C+aX2EgDeehJh0VywgGmIlsGsrj7dlVqzc17
3jVcwzVcwzVcwzVcwzX8NcQ1/mq9+Kvir1ZZ1qg/5TrR+Kuth28dSz5NXOVf
p/gQihuI13gMmKS9I72yzVDcqKtzHkSXqVik3l14/AomtnIOfXDsgu7nF772
8f02wG/cbTneuK2l77uPnkwWXzb+4kpakDgiTEXVgomnKp2Yw6rosoTDf0WX
vlbSmHY28GdK/GBZc3rRla8fu5DGyNnAn0PThOuOXdompclqTi9p0pe1bKts
31btEkqbDUVNaQBWt2a19n4w93QiEluYetRT2pQGysta9VCJSvxVemnLNjAe
bRgriuJ5heVQB/PgEjcajUYbe9+tcumtnZknvNtPe3af6Nx31pN/0fnHlzu/
3en+b9c/+rfRv/m/Ise+Eqn457ETvxWx/D/RD78Y+eCfPf3bL0wc0w3/XLz5
sz/qLzZcuHTgTNd+TIRFrA55N2H8ILvTKCd6uK/uiM0dvXEbjxHsGc+NzRaO
3djbO5bXO7obPobHdsVmjty5+0at39g9nBd7dLQN+SuiFoMCxR5K8YNIf43s
iswedQ3kOPzClYGcyPzhnpE9joAJ7q3xYQLwFiJkukdyMR/XUCanfqojeyxe
obGfKKDxPXWdhjMh07OHeMLg1Zv7LvVk8esLPfG8JkdQhEbhEvoYB03QOzRs
rhD9voKGanktgc6L3Zlw6ebE/luT+8gPKp9cqsw1Xoyh43MJ6zoFXm8u8lwK
juy0hkTO5d5zdRePFR7U6zERm5QfGt0NH1vD26meB2Y7fGboQmM4E93JKNf6
mZAAxmPa9hu7LnZnV3npNEY6h1fxR+U4dM76Pvfg8OTtAxOTB8I39jT2ZUA3
+UWNwYCzeEQj+zCj/OAONGxkF8YnBjC5GRjW2pcJw949jsm4GvuyOIcY9BEe
H5jNuQcHYRB6h/Og74BP3jkMGtoGdvBhkc19mUwDWjzo98vfldAQxg/OFrQO
ZFk8kk+1fDbxJj7vGq7hGq7hGq7hGq7hGv564ZVu/Ad9wgWowN6N64zb5XrS
OMHV4Rg/yL+Noa7glXSSF7elilsUqzp1UGc9i/L+deKSfrBBpb9WjptjnM8i
XzPuWcwrxfanwrndtcYnynO0WjxBT/X69S/G36nXSfUG4an0bwa+FeL+Ng43
EA51UVX/LOBrih/c7PchPLOVLn11u67CaSy+ss0z+KNYNDb75HYx8T99N603
77p+fmFbdct+dotyhj8obtpW0fa1Zy+eNHjeOta47aT3LaahMI+6C2P3iDvS
3SC+6+7s8PHLaWUt2y50vQsfo9FoWbOBeSqFvzrjf4dyWKEP1S8ufp35JYfn
AICAVLULle3p1c5sz9CPy5rSylpR5rz/vUg0dudRX0lzGpSyVn1JYxoltgIz
9CVN+mOX0qEJ5tCCo6VQ54jF4xeFKHmRXQ7/eXW74URH5kVn9qWLuRdqcztq
dt+syxi360Ztuunq341U/N8viv9N5NhvvKj5N8/t/y7y888v/OBXnv1/n3/6
gy/N/fg3wtUZl1xvnunebQtlWv1Crd9YHxCZKukZ3UmheRgtaAkYOQ9VdC5/
auoNu98MMpG5go6h7eQFhKsC3t5w1+jNvQ6/0D2GEWetA8gmWb3owUUheIv5
2zHAcL6QBHDNgPCtiTeorrdQHirmTJoGMDeXk+wJX8vlo/dqfAama0CJxWPs
GsZc8cTJICVF0XP4boFXOvJXE2/AvZjLER23DF0j6CzUN5oD1uKRlJ3o8WUN
iZiHyq3DdeU3EjlWQE5K5lrkjjDDFfQalMBzDV1whjH7FnJrtM7BzvFbe7mO
OaM6jd3onFbQ0pNV3SkSf3W4e2Q7fCVx3vWmPjMPL9zC+bi6x3eTzcZatwGM
gQFc+p7nSZm9f+j25L5Hd/fHHhXEZijIkXX244B8fHufA/rlFaAtUAKjev3j
/fxegikAY5C+my0AVdD35rB0ZCHq94iTdw4+vHsIvneqMI89tgs2R+YKL3ab
2d9sYHwvn7coxftLPJsRxgHnejAHBtzilX5LbLXfSxqu4Rqu4Rqu4Rqu4Rr+
6eKr5K8qCbevB9cr/BXU1fyV0hbc+Ar4K4WP2hh8kRNbgb9KyoNVpeDTFLzG
k5w3k+dOkOfUuLweNQ4VBU+lR7VO4nih15G/gkpSXmij8M3jrzg2inH2WtmC
vNOnwl+xBrkIchE3Cq/z4bNGydIxQ/v0/LVYNDbwsb3CaShtST/p/QZ8LG/J
cg9iUqxnz2fxQECnrsxp/PieE8RAprRFN/EoFI3FWvq+W9lmwMMKW/X2Tonv
8o38qLxFX96kOxd8X/aPMpS1bCtpTi+mVO18/mAJxveh/1VpUzr5X0WuP3DC
jaeDb58IHKrq0A3fOQcKm/r/KzRX1pzeNvC30VhkePJMlVOARsvbkODicMVz
wXf4VET4e3u6C7Dr91xwtbT56wDaPPukRru/Vec12/3ms8GdZ9z7Llw61Fmd
d++jP3jx0y9Eir8Qqft8pPJXI8e/GPlf/+eLf/hi7B9/Z+Gffi32o9+O/eOv
ffKzzwdsey53fvt01x5HCDWQxyNyLJL/1Xgevf9xnB1+LEyhTGAmKMOpELJV
I7f2sB9OXVDwjWwHxDeCsWlwb2T2SM/YbjulkDrRbYrNHX08c/RkVwa/88M3
kLe5HM7k5Fp47t70oRPdGTbpvEJx6u6eyEzByS5TXdCAXNl8/vy9QpsUo2cI
DaP7FlJMQTpAcLbAFd6BB+0F8Gw+h8ySQUH/q9lCPnwQLmH84EzBPLQVzEJv
IoqDawxnSivKbwRrg1d3xeYOQ3eU7kcwsu8AfwNapJhBPJ+Rm7t/9+DC9OET
3VKjdXR4YnQuH4y3StGCBXMP8kHYEtCDbcFrecRZ5YE8JY8qcIaRx7MRecjf
F0sfGSkmcXwXfVGaG/synjw8xI5PVp6amSPRuYJL/Vl2PjUyIPJRjCd6DOxP
awkJE1NIfJ1EUwU5fnAvD9S1cZyRc90ZDimHlQij9OT+QeqR8GTm8PyDgzBB
cMkRNMqOymgYzDXocQ1kUw464xKn3E153jVcwzVcwzVcwzVcwzX8dcOx8irj
B/nfeW2cEUUVZxefslV1SzCFqlXgjuDGxPFtVPzgUmvXhK9YVnmjFj+4jPxW
xbeOJZ8uHlc25L0k45hYvrYTefgKF+aGavC+zRTQ6cBblS4jJjxv0s09nXD1
fzD/dAKujEyer3LpK9sMZe3G9sEPnj6exHMDWw1nAt98tvB4/pOpuo6ssla9
pSNnaiYQjcam56+VudIqW/XlTYbzoe9IgYGUvz180wYN0YmBLxDG4w7nHZ79
4Vt2Jr5u3G9/9uIJKHkembd6c62dOXNPJx/Oj1rcWQ3e/Q/nroFM6+D3qjp0
lS79pZ73b9x3svHPX8zdnx9xDfzN6MQlpqqmZ4dB5fCdC86hD6bnRjFb18Iz
DNryGyjPdkZDiDJfhf/Y1fXujWNZz//7r0bq/+2LVjFi+fcv/ulfLnzvVxaO
/eHz6j/8pEGIHfvC3Z/+vtv9P1p6//Rc6PCJrmyksCgdk42ZjdlC5K+ClEgq
qKOs3YIPPW3yh67vshOF0juGH7vGd7QN7IBLLx4dmX2QfyaESvpHcxdmjz6e
Phi8lts2mPnx7f2xmcL5hwehAh8Dw3nPHh599vAwEV9IN3HG+Id3D7muZjvD
Wbdu7Y3NF2IC+YC5wSe2DGVCQ88fHr45sR9sc1/d8ezhEZC/1I9819ke9ICa
vruvY2hH62BO71jeFcCDBtdATs/49rkH+ZxsCrpzvicTkzXNHYbbn9w/COCZ
Pkw73zu6e3Jyv390p7N/O3Tk2aODz6ePnAghoRca2dE/shdaf3z3CNhDnJXQ
MpQj5+ZC3zNKhJ4/ffcN99VcMODmrb3R2TfJfQsG0wxXIzMFTx8eBbw1nA3G
L0wfhuFt7MuAUT3XmxmbKZDuHcgC8xr7zJxJ3hIgPt8n5blCJ7S5Qs4Djz5j
wQz03Zo5MnRjN/JXAxmR+fynj47AKA3e2NlCnm9MeU1PHfQMwRzl3L69D8yG
qeFpxVxYc0dh+sBImIKTXSYYlodTb3iu5sCNH0/sibAwPdSBYUxHdv/uQbAf
rsIowSRe7M6EAZm4+wY0Pfzx3r6RndAK+pgFDZv5vGu4hmu4hmu4hmu4hmv4
a4wrmb0TUoVLH/EsIaN6UxmfCXyJ/s8ibk8kQ1bC/YkEzvrt2ah5X7ldcXl5
ad79iWJJ+c9lcBvnc06GL5VXtxu/PsUU61BMYX8qfG3zsmH8Zyr8JfKqra+e
qix/b+o1IG4SL7qx56Im4FavkbOmV7UZShq39V23R2OR+U/uVDp1pS3pJU3G
8hZdz8fWmcd3YnSU4NnQNyhTejoI1Hv3RmOxBu+bZS70yDrpf/v2dNfzyJOp
R13zn9wFPWP3zts7t5c06UFzWbPubOgdCgxcKKeTAYuufP2M731mtDqufngm
8N7Fvj+/2P0XVycuvnj+OBaNWd3Z9x5fA4Hp+WsO746SNl2Nc0fvjdKFyNNo
FBmuuWf3at14amF5a5p75O9u3G9/GplbiMUc7dkjkxefLTxmm4enzpY26dsG
vz/3dIKZMfjTfvW7GDTXYYzzY/SIZ3r3dIT+sqvkwCc/+b3oSfOL6rTIP/xB
9H99OfLBP184oXt+ybRg+eqLos/fKf69jprdF07ln3EWnPbub+jcYfVhBnj0
v6Iz9eghNdf60YHH4RfGbqGnU2h4F3ouwRQHxUHKghWbPUQuRgcb+7N5xjE8
kNyKHj84sjCTvzCL5/ed6DLCX8wTPpv/fPpIB3EdGO7nQ5+9wHDuc8oEFZk9
GpspHLq+y+LV13gFh9/APEznte2TkwfgUnQOs4tTridzlRddT4PX8p5NF0KL
C3NgCaa3qnGbgiM7KRU5mJcPl0CDM5xNnE/B2Z6Mh1MH4WpzH56p1zqQNX8f
rYrOvokduV9woSuLSZgJaBFunzscmSuIzuVDuzg+aE8+qKLOmqs7RO9QDlJq
0Mqjo7H5I9fGd9l8uDgtbh0Le4d2TE7sg9tRydyb3VdzrSHMgl7ZKfiuYsel
xOkzBXQ2oghrm2LJyW/Kg/F6HLDZPbwbLvH6v9KLcYgwJvCxsRcJwPbB7dcn
9oKe4MguPh/QO5j7yfQhzGw/9yYMbP/Ydnr3gnKxpScrgrOch88a+gmbLoez
YRwAhC6AcHhsT41HZw+a6oJojGco99kDzDNGefsLe6/vaqEjDjGBP2XyhxIc
3t7gE6nvG/W8a7iGa7iGa7iGa7iGa/hnAZfi/miTWNFhgI9xOMmrcahXtUu5
XilO0LhUz7J4XLwhn8qUJA4xhfxa9St40v5uAB5IYX8SXK8a//g8YMlxozqf
mKJHPY+p8o/Fz7shqf7l8MV4TCyI+8UE/ZxfS2nXRjhUlJjEBFyJtUyFwz5I
wWHjrOgBHD4ubRcqip0gI+F+sZpjIYnUWoonkaf8YDJuXCUu2SnHXcLWbK35
zVLii3X1OKTELd7FeFWKPRSWx1PHjSbHl9Ev1yWc2UgFh48KDuNT4xWUuE6W
YS+dteIb9z5M5K+sfqPVayx1GTl/VGmLbu7xZCwWG7htw3zpLbqStrTyNv2p
gJTe6v78SE2HvsSpL2nTVbn0FU7dvbmxq7cvYHKqdkOpc1tlm+F899uXw+9d
6Hmv3nsIHZw8YkmrsZiSVp3r+nNmq0BneRsG9/388rapR12xaOyU771jjZg7
C/SUNRuKW9Mv978Pq73UqT/f/W5DMA9GptKlB1OrvTqw4WLvuw7fEYvHWOfV
l7dDScfoY7cBDLjS/5/xKXMLVR3bz3e/c67n7Rq3qdiZBuaBMed63rzQ+069
bz+FrOI4VHrSrej4JNZ4TXZv1llf/qWL3x48Zn720W/FPvpy5Adfiv797z23
7Yj+9Ncipb+zcPJrC3VfWaj44txHX5z+yZfHfvZHncezL1j2njq/t759lyOY
TfGDeHwenjcXMmEkrM90rtccncPz6U52ZVAedQNHyJ7sQr6rSWaubP50Dl6j
7wikSloGtjf2oaOUBZZowHSpPwfkMa+7F0MLQazWb6z2GRwBEzpi9WWCqhO9
InMmNT6Dza+X1jnlsGrsF5t60XPJHsLXOyzyyk4d9V1o6s1q7DE3dBnpvYf5
/EH/1OTeyExBZafA+ZrghQyvX6TTQ+K5riyrT/lO1J/ym1wDmZcHMio9abjG
/GZoAt/hnQaKmjzAMd3sbwz1csxVhf88VOum9Rk0tA7mNPbm1PmwIVj2/J5n
dylQAnUYh9ZwttUPl/ScCx2+dCoxL5YAY9LYkwn2oJ1kP9mA41DhSa/w6JlU
DF3NxVcQRfC1DexYIMP4PV9F71VQeyKUUR8Q2Ye50mMCU1sGslz9WTDUYAaN
pwCDU+7VQR3fjR3Gqs506CyOuVt/pje7pT/rTMhUJcfagyocN0861HGuezMa
0IMLTYU+do0ihwl4hQf6S55joS33e0nDNVzDNVzDNVzDNVzDP11czUdBHYoN
9w5GCSd5BV8qn5RHWgav6NBxaotV81Qbw19tFk7js0r+Cvk64lVWhyfXA3OX
Cl/lPn1lnPcvuNfAfQTiS/irhHVlI3w1PNUq8QQebBk7GVf4JWmv9Gr5q/Xw
VBvEX62Vj9okfEV+bKP4q4SyYX6n6NeHibZqOvS17UgonfG9HYtEY9HYmdA3
kEymdVXdYapy6R8/nYpGo6HrP6tBhyXknzGK0Kkb+tj64vkTa2cWLWDMmYYz
5cfBsfp0dT4DTrrbAMLlLTqMH8SDDWPVzvQqpxFKmctw/V5bLBa72P1eZau+
qk0Hb1qwp8ajQ3rNg0RNnQ/TmIMq+Gsjj6NanxlaoYoIrRAoUjFaPPq6ToFO
u9NZOjPgI2iweOkv3NKJ3ko1mGDNZPUZ+IC/+pA0yPX+rIuB/Cvnvznwkf7J
3/3Wiw9/feH//T9efP8LC+W6T668Gav97YXqbQu1wosfffFqqbm94VvNjjeb
6g811b8BpfFk3unLOxo6c1zhHZF5PMzOEjKQv6XpfI+ZTuXjoDl8linFt8h/
HeRGhWmRvCZ7MMMSQHIGwYDeGhL5obZTJjQ7pdKCuyjlO04f3GUNpNtJmF8R
TNqAgByxTmcgUgdxGfgw3TpLonk+AYmsgAH089uPc6RDvS6kc/jFian90bkC
h+wASTmyuBWkp1iPql0Dpy6HSw5aWrzAYrOFmLWengjmwdASSsZll4eiwWsm
O2XPQ8ppz05xePyf2kHax4iU6UvyXJUHRPW8YJ2+dvESJlGfOdI3toe6ifTR
zVv7YvOFME3SM8Lpp+B2vx7/0r8xKaF8Upg/kYrcrt0n1FPrHLnPIwN9oVxn
2LQlYCSF6HrH7nYWHgFiFHlwwIze0d2R2aOtAxkqL1ndhj/vGq7hGq7hGq7h
Gq7hGv6ZwpOBKjzxrpXkf2lwv5g8Z5EvyaCtV/9G4Cu3K65K3p8opl4h9o3G
U/dL2eksGfkluDoA9iXn3R6PJLP/5fCXiB98GTxVUeSXiRqOn7vkj4N9Y/Kn
LbMe1okjm0H8lcVjrHIK9b59Dx8P4/mAsdi5rrcsHn11p7GuE4+Zq+nQD03a
MC7Pvx0QkLd4hWp3eo1LNz51LhpdGLl7qd6Xa+k0Wb1mDLv2ITdi9TLvhAfD
Vbr0Fa60893vc9xflWsbgDUdxqoOXXP4u5jjffijCqehymmsbtfVuAVoxRrQ
szcOck1+oyVAWf29BjYbiQu/ni5xtn8z9YVOAQABrJjYQ4YEkPXC95IPLDTy
7eg+hG5ylHg8kFEf2H42cKSpIX/yh79//5++Ol3xHx7/w28+/7vfW/j7r0Y/
/OJCyZeel/1G7MNfX/jH34j8zy/0H9vREf6L8+EDZ/v2nu/bd757z9nQnpPB
nQ1BE2f2npo62DO6Mzy2C7NXYVjfkbGP98kPOPJFDiSLkOtgfoMdh5T5Ij5K
Mgx7hESKWbrXb2ZJO1JGxDgRT8JvY3Tu8hGXFTTZiYRhgojIIh3faAkY6/2U
Ct6vZzaJGSGbzGraiW+Bdp3hrNGbe5lNqgsakPICM4gcw49ELhFlRCyZygyp
O8TLBYZze8bzOBUV/D3Xi3m0/Nd21AWZblrsOxhmV1gy4oVAoJbukhI8koX8
j0HMlcH4EF9HNsu8X31AVJ5c5vEwafz80fGP90CPOoayb028EZ3LX3hw9Fyv
GROUQXeoXzSeBroRxsHMhln9gsI0MqMFH6EX3WM7/KM77KpnlteSJcSPrYGo
QrrFRzaH9A4Sk06cpDDSM73Zg+N5FDoqSS6lrLfc7yUN13AN13AN13AN13AN
31q4vI+I/7h+/cnA1whPUcRUG/YU+NaZ36V4nMBnib9aFl/bevil5a+WkX81
/NUGnouagHP8YJnLcDL41uRM7+TD4NSjnomH3XdnuoYnHGUd+iqn0eJFjya7
92D7tb+t86F8VTuG6Vk8Rrjl9nQX3DL1KHRvtudU6M2qdt6qGynWTE+RbsZS
Z/rx5vQql9438mM+WLDGjQ5+eNpgq66mwzh859z9x0MW11731b+dmuu+cb8d
TIJ2YRwq3WK1O51ZArC5woOBWhx7Rf6ooj2YUe7WVXrSOdcQ4hirJXIfwVSM
BfOba9wm9TmzlVLdXIXxg6Z6f9aJ1rwL1t1tZZmtl7/t7H7P3/Xd22VZj3/4
r5///EvzFb+7UP3FWOVXHv/iK3f//qtP/uevP/jr32ps/OaJ0C6r34ST5RM4
vs+GnA+mbIrMHsVkR8RcPZ4+1DuWJ3kc+c2OQIaycpDrCOoox7vZGjLV+XV4
/J9PWvPMxXHfyZ/HxPSO1S8oODueIQHl18tnXOLtUKnx6dkdCPnJTh2vT855
ZZV9NaH7MGjwscIHY6unwwfRQbTcjVRVXVCEOkwB0lZ+I82FnmkZEIaPFN9n
WDzP1w8VEe5lFgjHv4O9iXASYZrsQaKSZvMn7xykEYB79RU0XxxvCOuHSCT0
WyafUmTYYIXAR+K7xIoOdMwjIssM90JbOP5BzGNW5TFZ0GnNWNapJ/uxL+QX
rXdhHvg/5kMGMSXXo4L7U0fOU7Akx/1Jz4gf9de2GykeEHWSfyxSeRw7yUwd
1Bt7sqOzhZOTB2AAYU3aaLJgQGBY5OdLD6rIn02gdUt40FDeKcAQsQzYCebV
B5CehYGqcOM8bujzruEaruEaruEaruEaruGfBby8HVOp8CaRcqfo+VjA8nYj
4iQPdcCTyktxhSifqEfBlXhDRd6Bv72TxC3aU8Qzfuo47wGXxXUKLu1fVONM
eT82ax7j4jE3QL++2q1X4ZIfwvJ6uL9QUe+L14or8YNL5ZV2lfhBMECJH1y0
R44fZHwx3nAZvFOnwg2rxNm2GjmvC+6FU+NKPB3j7AaWEvcs5pvi+MpUOOvf
qLjFVHF/a5VPqQfrehnXK3nC14qr14P6uVs7noK/6tCXudLq3GKt21DWqitx
pZMnlZHehxyyZ6ygM/5sPqHOJ4J8hSut1o8UVpkLU1RZ/SaLl7gCF57lZw8w
J2AkJyiUqWhLH5qwP194yunT6zoxQLK4XQevR/Tj8hj6btXHONl6LHZvfrCk
A8bBbPfpiSfhZxOfR+Qr6AA45NDcUuxYlYfePz545yBhVd0hLj6/7nTsY4hy
ELn17NzCzxTq9BtrPDqY7hO+rDOt2x2uXSf8+0/37DrVnXep8xvXP9LPfvTl
Xkt28Ow3pyp/J3L8y4M1mZ0tf9FfsXvq+7/rrcg9Gyh0+Myc5wqdoIhTOtFl
bOnPag1vbxvIaR3IOh+iwDR25qFe8PyyG5U9wOy0mUkSijuTvH2YsJJ9/wyg
nIMEcaj9JnZVsoeIXfShMPpE+SjGlnx4YAZ5HVpDuCAxFxa1XkP5ptj1C+aI
eC1B4YWYz6Fxg3k01QUNFZ50fM8EKVdYZzpyg35jfchUybmweI156P1J3al2
S993OM4dpgoPRdj59dIc+Y2N/dl37uzrGd3JQXmVxEli3nJan1C4+/J7WJT4
McRFZQ0wDjYTL2SAeQflFW5RsUF5h2M4qsdwssvUOpBxpSf7cm+mM5x1ti8L
lNRQf/H72q2jdpE+qpTWLU4Z1OXvO+ZO9TzO8C49H8qcmNp/9cbuqnaB+D1+
1nAobDJ3h88afbfSWhWZ+5LzDKCnHNyL8rQkYCLgo51cvDbueddwDddwDddw
DddwDdfwzwKu4p3EeN5pRf4qQT4lruav1Hrw97BPsKl5Mxn/bPBXjHO/KhLz
ieni2l12vipT8FQV9O/pq+evVrdOPjX+ahk8WbsJduplO+N4LYV3Ussr/BXs
0V4Bf5WAK/xVcnzx3hX4q6Q8WFUK3qwqBd9VvRLvpNYDFUXPp8VfJZQN8T/k
UC8OvkOvKjzGToS/tX4DH2nHQU8Wvwlj7vAkVnQxsvuMUryez8QJqer8Olun
SJmp9Bypx3PETBF5EJkwRNFrqHVjudDzjcDNH7EfF5RaJNDMFg8O2qnAwcDN
f2oJ/ycp/NAvcBpt9kmT4sUwuEyiFKSGSEAKv5LqEtVjlw/upHvNHHxHPJK0
2DiJutVvqu/KcoQyHSEzPB0NPvFUz94rl96+/9M/6Lbvbuz8dnvvd/prcp4W
fd5Td6h14M8u+99qOfnHfcfNFy8eOhPaKWWU4sxRUpojfFrt0lCLOIaykZho
PWCyhhaPEKV07oqwVFHupY5TEGWQ8q4HDHLcnBR5p2SUwpEPSItHGgopK5SZ
e2qloZP7LsrDIjn7OYIqL82gRO6hHxchDmmg2GCB+8jJzGlgEaczAQX1wLLB
GMRH1nIydikoL7QY8IhTGdArZjBulwcHl1+Ig/jiBgoH0y/IfTFzcF89rwRi
Avl2qVFqCEk/DtiUF4CUsItb9BmVEeC7pKs02qoTYJmQXFxvDr/AmqV596v9
MGk1YpIxCmKVFcqLVp5u0sbk1dKndQv4J2u4hmu4hmu4hmu4hmv41sHllB30
Uc4XpPy2VP8WTSK/rJ7Fdu3BdeJx9ifr1HLyG4Srf42rf8bLu9TE8VkmkGot
+KbMbwo87uoy45wgpmwz1XdtFJ66X2IKOxfx+HWVBE/syCrwuF12UExmf0o8
RX/j8TXGDy61dkPwVCWpfPzcpVxm6hm0rxOPazHJInkpXCTCQeTANC5W/3Ly
MoO0nLzNL2/bfVgkooxoK0WemTEU6DRgzisvCzNRKWU6WmW/pIxJSeQT8MQ5
Uq9MIouyLvQc6LDs7Dy960pv4emeXWf79nec/eaT0i+02/Mv9h5s6M4+2334
cssh96Xd5wO7baFMpj7kvEyGFCvh1ZSk61B+scj5xpOt59TvYZWSxPFfcsvm
rE8N13AN13AN13AN13AN1/BfdnypzIp6lt9PUUph47rt2RBcvT2RTFLhiv1q
O1Pv+17WHvtSPH5vvjo9qeRXhauKmFCxJ+LCunE1TbSy/BKeTXHGsMavH+mj
7NOyIh5vT7Ilmqx8KnjKefcnEjgr4EFxzfaslRddf3+XY6Ht8StkGby83VjW
Lq0QqJR3SJc2Eu+QfBplXFhRXsFZZhkcYwxdBs6aDhXAmbxS2gW8xKmHS0Rz
GZfTvwp7Fu3vECrkWDb2I2UHGLV/46KfYUCglPXmE6GMsx17Wy/uPOND9yoK
Y8xu7PiP94v+qPlE4dnQPsw3FTKf6tpxwb3rnDe3PpiJ7jpE4rGPkJxSHkvS
J3GVRXZmW1pn/cgdMTfIdYtX4PxXtiR+fSo/RilmOaV/qeIfS3GFav9bgfNK
qeZFtKlwR1Bc7XxpuIZvVTzZOtfWs4ZruIZruIZruIZ/mniptJ/Cn+68b+J0
uGUqnGVYvkyqC0nwdl08LqwGh9/5S3Gl3TL1vm8tuHoftxzeoVfjyfet6v2g
nAt3tbhKT3k7HXFFOPwsZIoglTxslBZ/N3ZgDl7esq0eV/RAsdM4A8h1woX4
uMX4OMpNxjlutELKf4J4pSpHShI8kEI+FZ5CD7ebJP5xjTjrr4zLx7Wh+JJ9
9GrwxbxexEXA3lyW16v1q/BFPXCvGk+qR81vrAdXxUXWekSqi9zuIi5zCwm4
ci+/x5TntEzmDTYSV70H4t4bqeWV5zfpe6ZMvnfpe1itZykfYg+Kip6kfMiK
9ijvE3rnLL4rFP6K452TrQcDzFFD1/ZL7dtPduZZgzlWvwnzSnnN50Nvjn6Y
ecV25HRon9WXYQ3oKbYxq8GLaawozE3gc1ftclSm7fXnrxLeY8nmfaX1sNnr
VsM1fBPwZfirLWWnhmu4hmu4hmu4hv+S4KUqPor5K45RKluCs/zL4El5MNj7
LJVnO2Xeaf240m4cruLTUvFXZerfaWo8lfwaebC4eUm+39Gr+SjJN2PVuIpP
0zNnJeHtUg6orcZfJc0/ZvMb19luKh5M5otS8VFbBV8Xf5WYH2wt8lUeIRWP
oeKjkvNjSXE7nVmQir9SeINUPFUqXF3scnldcGu8C+gK8nI8muJH6kjMerQO
exLaFRNvkRoV+QRDPIvQl9UQyoGmHZxiPWg6233QXb7rvO3A2e43WJhzLlHa
KFlhfGz10rl7JUVM1vriCKgHKkFmQ+IHN2K+NFzDNVzDNVzDNVzDNVzDNTwR
XyqzNe185XiyfcpG6V9PvpRU8qvCVUVMqNgTceEV4euMU1tru2vVv0Vwkf1Y
Vo0nWVQrtPu6xQ/a1CxQ/POyUbgtvnXHkrx8avmlWdGWeX6t8Q5ICfrjhoUI
8KTyL9evpfxV/KtD5q9slDYcWSk6QrFOIdyCptNdu06f3nvKtvt0z15FucNv
QO+soHSjTc74/cvMX23S+tRwDX+VuLaeNVzDNVzDNVzDNXyr4bb4+tKyVP4z
iceNj39xC7NRv/cSL2n8VWD1/EkqO1eyf+N5mE3BU09T0n10SnyT8/+/DL4x
/FXZ0njnJX6YL4unindeSV7GhWXwUqgvK580njq5/FrsR19Tl45fWVApb9cz
vySd90oyfJ4p24D+eO50xms7jZWd0oxUd4oO//aGK3tONew8Ecit8xl5jmr9
BorXw+WnTl+/1eIH1X6AeM6pdOapqI6jVJ8bqx4f9Tm5ycY5bvxVfsUrzZeG
a/hWxtf6/tFwDddwDddwDddwDd9MvMRpgI82+kfz4jYd1Dl+sLQtEedtyFKc
9cC+bHkcfs+nki+R668GX2Zfmer3WzwurIjbku5/U+x31Pm4eI4I1y3Kt0v1
9eFK3i0A4aNN0m+ocOrsKhm+FyqVLinGkPdrm4JLub+Ww3Fs/Zj/R6XHqJJP
hcfpkeIK/WLS+ER7irjFV4bzGkjA5T31YhyfIyimwjcvDpHX9kbGM7qlGFs1
byDlGVNwWSYVXkrP2tLndCPxZM/18vLK+4Tek8YV3zOrxxP2j/QeW4M9i/qX
568W16dOmceqTnw/1MEa6zTUugV7CCmgKo9g9WU5XHknL2+3+7ItXoFzXtX6
jbX0wEKxEK1kf835q6XvMR43HnP1OCe8z0tc6cnnd7PXrYZr+Oa8D7X1rOEa
ruEaruEaruFbBy9uk3keP/JLUDh/+yJPJeOJ/JVfVPNaJTI3ZY/nrxR8Gf4q
jh9biQdbB16ShNcSkuCu9I39vVcq81f2oLj03zG5v8lw3v+mJ+Wj1oov5a/s
8r5YzV8hryX5t+heBld4JKgn7PtsnEO+fUX+SlzEX4q/StCjV/Juqf0o1oq/
Sv5K7QeyPK7K95Uk73QSvmtZnor1JMXV/MaK+GbwV7ZN90cVlcJsjCNg4mla
pfxKfpup5FV4vJ2KtQqunKC6pv7KrSf4Z4rqq3HGBGH9m+xBE7/BMKQRqSpc
RSd8OfbWLEcwG08bDGAqeOyIHGMoqaJbljTxKouYrPXFEVBAe/y4oUyq+FyV
koRxVtaJWngT1qeGa/grxbX1rOEaruEaruEaruFbDbcl1JPlY0mQX43+pHld
lsFX1P+S9sj4ivvNxH2l8u/7q8NXttMWZ8maxieV/uVw1b5M3XRcRTU4cfLr
wO3BxH4thyePO4sbTNIvKhtPpZ4KT9DDG/BEO+Xt9jrwBPs3BE+xx0+6AU/A
U/EPKcdzFeO/qnlZI74MG5DweC6H///mgV65
"], {{0, 0}, {1600, 30}}, {0, 255},
ColorFunction->RGBColor],
ImageSize->{1600, 30},
PlotRange->{{0, 1600}, {0, 30}}]], "DemonstrationHeader"],
Cell["Keynesian Cross Diagram", "DemoTitle",
CellID->700863240],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`auto$$ = 5100, $CellContext`c$$ =
0.7, $CellContext`format$$ = False, $CellContext`T$$ =
3000, $CellContext`Y$$ = 13000, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`auto$$], 5100, "autonomous expenditure"}, 4000,
8000}, {{
Hold[$CellContext`c$$], 0.7, "marginal propensity to consume"}, 0.4,
0.8, 0.01}, {{
Hold[$CellContext`T$$], 3000, "taxes"}, 0, 5000}, {{
Hold[$CellContext`Y$$], 13000, "potential output"}, 6000, 17000}, {{
Hold[$CellContext`format$$], False, "large format"}, {True, False}}},
Typeset`size$$ = {400., {150., 154.}}, Typeset`update$$ = 0,
Typeset`initDone$$, Typeset`skipInitDone$$ =
True, $CellContext`auto$18764$$ = 0, $CellContext`c$18765$$ =
0, $CellContext`T$18766$$ = 0, $CellContext`Y$18767$$ =
0, $CellContext`format$18768$$ = False},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`auto$$ = 5100, $CellContext`c$$ =
0.7, $CellContext`format$$ = False, $CellContext`T$$ =
3000, $CellContext`Y$$ = 13000}, "ControllerVariables" :> {
Hold[$CellContext`auto$$, $CellContext`auto$18764$$, 0],
Hold[$CellContext`c$$, $CellContext`c$18765$$, 0],
Hold[$CellContext`T$$, $CellContext`T$18766$$, 0],
Hold[$CellContext`Y$$, $CellContext`Y$18767$$, 0],
Hold[$CellContext`format$$, $CellContext`format$18768$$, False]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> Show[
Plot[{
Tooltip[$CellContext`auto$$ + $CellContext`c$$ ($CellContext`Y$$ - \
$CellContext`T$$), "aggregate expenditure"],
Tooltip[$CellContext`Y$$, "Y = AE"]}, {$CellContext`Y$$, 0, 20000},
PlotStyle -> {{
Thickness[0.006],
Opacity[0.6]}, {
Thickness[0.006],
Opacity[0.6], Red}}, Filling -> {1 -> {2}}, AxesOrigin -> {0, 0},
AxesLabel -> {
Style["output, income", 12],
Style["aggregate expenditure", 12]},
Ticks -> {{(-$CellContext`auto$$ + $CellContext`c$$ \
$CellContext`T$$)/(-1 + $CellContext`c$$)}, {(-$CellContext`auto$$ + \
$CellContext`c$$ $CellContext`T$$)/(-1 + $CellContext`c$$)}},
PlotRange -> {{0, 20000}, {0, 20000}}],
Graphics[{
Disk[{(-$CellContext`auto$$ + $CellContext`c$$ \
$CellContext`T$$)/(-1 + $CellContext`c$$), (-$CellContext`auto$$ + \
$CellContext`c$$ $CellContext`T$$)/(-1 + $CellContext`c$$)}, 100],
Opacity[0.5],
Thickness[0.004],
Tooltip[
Line[{{$CellContext`Y$$, 0}, {$CellContext`Y$$, 20000}}],
"potential output"], Black,
Opacity[1],
Thickness[0.002],
Circle[{0, 0}, 1000, {0, Pi/4}],
Text[
"\!\(\*SuperscriptBox[\(45\), \(\[SmallCircle]\)]\)", {1700, 550}],
Opacity[0.7], Dashed,
Thickness[0.002],
Line[{{0, (-$CellContext`auto$$ + $CellContext`c$$ \
$CellContext`T$$)/(-1 + $CellContext`c$$)}, {(-$CellContext`auto$$ + \
$CellContext`c$$ $CellContext`T$$)/(-1 + $CellContext`c$$), \
(-$CellContext`auto$$ + $CellContext`c$$ $CellContext`T$$)/(-1 + \
$CellContext`c$$)}}],
Line[{{(-$CellContext`auto$$ + $CellContext`c$$ \
$CellContext`T$$)/(-1 + $CellContext`c$$),
0}, {(-$CellContext`auto$$ + $CellContext`c$$ \
$CellContext`T$$)/(-1 + $CellContext`c$$), (-$CellContext`auto$$ + \
$CellContext`c$$ $CellContext`T$$)/(-1 + $CellContext`c$$)}}],
Opacity[1],
Which[$CellContext`Y$$ > (-$CellContext`auto$$ + $CellContext`c$$ \
$CellContext`T$$)/(-1 + $CellContext`c$$), {
Text["recessionary", {$CellContext`Y$$ - 2300, 2000}],
Text[
"gap", {$CellContext`Y$$ - 2300,
1350}]}, $CellContext`Y$$ < (-$CellContext`auto$$ + \
$CellContext`c$$ $CellContext`T$$)/(-1 + $CellContext`c$$), {
Text["inflationary", {$CellContext`Y$$ + 2300, 2000}],
Text[
"gap", {$CellContext`Y$$ + 2300,
1350}]}, (-$CellContext`auto$$ + $CellContext`c$$ \
$CellContext`T$$)/(-1 + $CellContext`c$$) <= $CellContext`Y$$ <= \
(-$CellContext`auto$$ + $CellContext`c$$ $CellContext`T$$)/(-1 + \
$CellContext`c$$),
Text["full employment", {$CellContext`Y$$, 6000}]]}], ImageSize ->
If[$CellContext`format$$, 500, 400], AspectRatio -> 1],
"Specifications" :> {{{$CellContext`auto$$, 5100,
"autonomous expenditure"}, 4000, 8000, Appearance ->
"Labeled"}, {{$CellContext`c$$, 0.7,
"marginal propensity to consume"}, 0.4, 0.8, 0.01, Appearance ->
"Labeled"}, {{$CellContext`T$$, 3000, "taxes"}, 0, 5000, Appearance ->
"Labeled"}, {{$CellContext`Y$$, 13000, "potential output"}, 6000,
17000, Appearance ->
"Labeled"}, {{$CellContext`format$$, False, "large format"}, {
True, False}}}, "Options" :> {AutorunSequencing -> {1, 2, 3, 4}},
"DefaultOptions" :> {ControllerLinking -> True}],
ImageSizeCache->{444., {243., 248.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellID->17590522],
Cell[TextData[{
"Samuelson's Keynesian cross diagram is an attempt to capture the essence of \
Keynes' theory of effective demand. The blue line represents aggregate \
expenditure on domestically produced goods and services. Of all the \
components of aggregate expenditure, only the level of consumption is assumed \
to be a function of income; the other components are assumed to be \
autonomous. The red ",
Cell[BoxData[
FormBox[
SuperscriptBox["45", "\[SmallCircle]"], TraditionalForm]], "InlineMath"],
" line expresses the accounting identity that aggregate expenditure is equal \
to national income. The model shows that a change in autonomous expenditure \
leads to a larger-sized change in national income, a relationship known as \
the multiplier effect.\n"
}], "ManipulateCaption",
CellID->1044312921],
Cell["THINGS TO TRY", "ManipulateCaption",
FontSize->10,
FontSlant->"Plain",
FontColor->RGBColor[
0.6950942244602121, 0.7903257801174944, 0.29706263828488594`],
CellTags->"ControlSuggestions"],
Cell[TextData[{
Cell[BoxData[
TooltipBox[
PaneSelectorBox[{False->Cell[TextData[StyleBox["Resize Images",
FontFamily->"Verdana"]]], True->Cell[TextData[StyleBox["Resize Images",
FontFamily->"Verdana",
FontColor->GrayLevel[0.5]]]]}, Dynamic[
CurrentValue["MouseOver"]]],
"\"Click inside an image to reveal its orange resize frame.\\nDrag any of \
the orange resize handles to resize the image.\"",
LabelStyle->{
FontFamily -> "Verdana", FontSize -> 10, FontColor -> GrayLevel[0.35],
Background -> GrayLevel[0.98]}]]],
StyleBox["\[NonBreakingSpace]\[FilledVerySmallSquare]\[NonBreakingSpace]",
FontColor->RGBColor[0.928786, 0.43122, 0.104662]],
Cell[BoxData[
TooltipBox[
PaneSelectorBox[{False->Cell[TextData[StyleBox["Slider Zoom",
FontFamily->"Verdana"]]], True->Cell[TextData[StyleBox["Slider Zoom",
FontFamily->"Verdana",
FontColor->GrayLevel[0.5]]]]}, Dynamic[
CurrentValue["MouseOver"]]],
RowBox[{"\"Hold down the \"",
FrameBox[
"Alt", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]],
"\" key while moving a slider to make fine adjustments in the slider \
value.\\nHold \"",
FrameBox[
"Ctrl", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" and/or \"",
FrameBox[
"Shift", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" at the same time as \"",
FrameBox[
"Alt", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" to make ever finer adjustments.\""}],
LabelStyle->{
FontFamily -> "Verdana", FontSize -> 10, FontColor -> GrayLevel[0.35],
Background -> GrayLevel[0.98]}]]]
}], "ManipulateCaption",
CellMargins->{{Inherited, Inherited}, {0, 0}},
Deployed->True,
FontFamily->"Verdana",
CellTags->"ControlSuggestions"],
Cell[TextData[StyleBox[ButtonBox["DOWNLOAD DEMONSTRATION SOURCE CODE \
\[RightGuillemet]",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/versions/source.jsp?id=\
KeynesianCrossDiagram&version=0012"], None},
ButtonNote->
"http://demonstrations.wolfram.com/KeynesianCrossDiagram/\
KeynesianCrossDiagram-source.nb"],
FontWeight->"Bold",
FontColor->RGBColor[0.928786, 0.43122, 0.104662]]], "ShowSource",
FontSize->10],
Cell["PERMANENT CITATION DATA", "CitationSection"],
Cell[TextData[{
"\"",
ButtonBox["Keynesian Cross Diagram",
BaseStyle->"SiteLink",
ButtonData->{
URL["http://demonstrations.wolfram.com/KeynesianCrossDiagram/"], None},
ButtonNote->"http://demonstrations.wolfram.com/KeynesianCrossDiagram/"],
"\"",
" from ",
ButtonBox["The Wolfram Demonstrations Project",
BaseStyle->"SiteLink",
ButtonData->{
URL["http://demonstrations.wolfram.com/"], None},
ButtonNote->"http://demonstrations.wolfram.com/"],
"\[ParagraphSeparator]\[NonBreakingSpace]",
ButtonBox["http://demonstrations.wolfram.com/KeynesianCrossDiagram/",
BaseStyle->"SiteLink",
ButtonData->{
URL["http://demonstrations.wolfram.com/KeynesianCrossDiagram/"], None},
ButtonNote->"http://demonstrations.wolfram.com/KeynesianCrossDiagram/"]
}], "Citations"],
Cell[" ", "AuthorSection"],
Cell[TextData[{
"Contributed by: ",
ButtonBox["Fiona Maclachlan",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/author.html?author=Fiona+\
Maclachlan"], None},
ButtonNote->
"http://demonstrations.wolfram.com/author.html?author=Fiona+Maclachlan"]
}], "Author",
FontColor->GrayLevel[0.6],
CellID->571126336],
Cell[TextData[{
"\[Copyright] ",
StyleBox[ButtonBox["The Wolfram Demonstrations Project & Contributors",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/"], None},
ButtonNote->"http://demonstrations.wolfram.com/"],
FontColor->GrayLevel[0.6]],
"\[ThickSpace]\[ThickSpace]\[ThickSpace]|\[ThickSpace]\[ThickSpace]\
\[ThickSpace]",
StyleBox[ButtonBox["Terms of Use",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/termsofuse.html"], None},
ButtonNote->"http://demonstrations.wolfram.com/termsofuse.html"],
FontColor->GrayLevel[0.6]]
}], "Text",
CellFrame->{{0, 0}, {0, 0.5}},
CellMargins->{{48, 48}, {20, 50}},
CellFrameColor->GrayLevel[0.45098],
FontFamily->"Verdana",
FontSize->9,
FontColor->GrayLevel[0.6],
CellTags->"Copyright"]
},
Editable->False,
Saveable->False,
ScreenStyleEnvironment->"Working",
CellGrouping->Manual,
WindowSize->{630, 650},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
WindowElements->{
"StatusArea", "MemoryMonitor", "MagnificationPopUp", "VerticalScrollBar",
"MenuBar"},
WindowTitle->"Keynesian Cross Diagram",
DockedCells->{},
CellContext->Notebook,
FrontEndVersion->"6.0 for Microsoft Windows (32-bit) (February 7, 2008)",
StyleDefinitions->Notebook[{
Cell[
CellGroupData[{
Cell[
"Demonstration Styles", "Title",
CellChangeTimes -> {
3.3509184553711*^9, {3.36928902713192*^9, 3.36928902738193*^9}, {
3.3754479092466917`*^9, 3.3754479095123196`*^9}, {
3.375558447161495*^9, 3.375558447395873*^9}, {3.37572892702972*^9,
3.375728927639103*^9}}],
Cell[
StyleData[StyleDefinitions -> "Default.nb"]],
Cell[
CellGroupData[{
Cell[
"Style Environment Names", "Section",
CellChangeTimes -> {{3.369277974278112*^9, 3.369277974396138*^9}}],
Cell[
StyleData[All, "Working"], ShowCellBracket -> False]}, Closed]],
Cell[
CellGroupData[{
Cell[
"Notebook Options", "Section",
CellChangeTimes -> {{3.374865264950812*^9, 3.374865265419568*^9}}],
Cell[
" The options defined for the style below will be used at the \
Notebook level. ", "Text"],
Cell[
StyleData["Notebook"], Editable -> True,
PageHeaders -> {{None, None, None}, {None, None, None}},
PageFooters -> {{None, None, None}, {None, None, None}},
PageHeaderLines -> {False, False},
PageFooterLines -> {False, False},
PrintingOptions -> {
"FacingPages" -> False, "FirstPageFooter" -> False,
"RestPagesFooter" -> False}, CreateCellID -> True,
CellFrameLabelMargins -> 6, DefaultNewInlineCellStyle ->
"InlineMath", DefaultInlineFormatType ->
"DefaultTextInlineFormatType", TrackCellChangeTimes -> False,
ShowStringCharacters -> True, CacheGraphics -> False,
StyleMenuListing -> None]}, Closed]],
Cell[
CellGroupData[{
Cell[
"Input/Output", "Section",
CellChangeTimes -> {{3.3756313297791014`*^9,
3.3756313299509783`*^9}}],
Cell[
"The cells in this section define styles used for input and output \
to the kernel. Be careful when modifying, renaming, or removing these \
styles, because the front end associates special meanings with these style \
names. ", "Text"],
Cell[
StyleData["Input"], CellMargins -> {{48, 4}, {6, 4}}],
Cell[
StyleData["Output"], CellMargins -> {{48, 4}, {6, 4}}],
Cell[
StyleData["DemonstrationHeader"], Deletable -> False,
CellFrame -> {{0, 0}, {0, 1}}, ShowCellBracket -> False,
CellMargins -> {{0, 0}, {30, 0}},
CellGroupingRules -> {"SectionGrouping", 20},
CellHorizontalScrolling -> True,
CellFrameMargins -> {{0, 0}, {0, 0}}, CellFrameColor ->
RGBColor[0.6449835965514611, 0.758632791638056, 0.2516823071641108],
StyleMenuListing -> None, Background ->
RGBColor[
0.6449835965514611, 0.758632791638056, 0.2516823071641108]],
Cell[
StyleData["ShowSource"], CellFrame -> {{0, 0}, {0, 1}},
ShowCellBracket -> False, CellMargins -> {{48, 48}, {8, 28}},
CellFrameMargins -> {{48, 48}, {6, 8}}, CellFrameColor ->
RGBColor[0.691905, 0.790311, 0.300252], StyleMenuListing -> None,
FontFamily -> "Helvetica", FontSize -> 10, FontWeight -> "Bold",
FontSlant -> "Plain", FontColor -> RGBColor[1, 0.42, 0]]}, Closed]],
Cell[
CellGroupData[{
Cell[
"Basic Styles", "Section",
CellChangeTimes -> {{3.34971724802035*^9, 3.34971724966638*^9}, {
3.35091840608065*^9, 3.35091840781999*^9}, {3.35091845122987*^9,
3.35091845356607*^9}, {3.35686681885432*^9, 3.35686681945788*^9}, {
3.375657418186455*^9, 3.375657418452083*^9}}],
Cell[
StyleData["Hyperlink"], StyleMenuListing -> None, FontColor ->
GrayLevel[0]],
Cell[
StyleData["SiteLink"], StyleMenuListing -> None,
ButtonStyleMenuListing -> Automatic, FontColor ->
GrayLevel[0.45098],
ButtonBoxOptions -> {
Active -> True, ButtonFrame -> "None",
ButtonFunction :> (FrontEndExecute[{
NotebookLocate[#2]}]& ), ButtonNote -> ButtonData}],
Cell[
StyleData["Link"], FontColor -> GrayLevel[0.45098]],
Cell[
CellGroupData[{
Cell[
StyleData["DemoNotes"], CellFrame -> True,
CellMargins -> {{0, 0}, {0, 0}}, ReturnCreatesNewCell -> True,
CellFrameMargins -> {{48, 48}, {4, 4}}, CellFrameColor ->
GrayLevel[0.99], StyleMenuListing -> None, FontFamily ->
"Verdana", FontSize -> 10, FontColor -> GrayLevel[0.45098]],
Cell[
StyleData["DemoNotes", "Printout"],
CellMargins -> {{24, 0}, {0, 10}}, FontSize -> 9]}, Closed]],
Cell[
StyleData["SnapshotsSection"], CellFrame -> {{0, 0}, {0, 2}},
ShowCellBracket -> False, ShowGroupOpener -> True,
CellMargins -> {{48, 48}, {10, 30}},
PrivateCellOptions -> {"DefaultCellGroupOpen" -> False},
CellGroupingRules -> {"SectionGrouping", 30},
CellFrameMargins -> {{8, 8}, {8, 2}}, CellFrameColor ->
RGBColor[0.870588, 0.521569, 0.121569], DefaultNewCellStyle ->
"SnapshotCaption", StyleMenuListing -> None, FontFamily ->
"Verdana", FontSize -> 12, FontColor -> GrayLevel[0.45098]],
Cell[
StyleData[
"SnapshotCaption", StyleDefinitions -> StyleData["DemoNotes"]],
ShowCellBracket -> False],
Cell[
CellGroupData[{
Cell[
StyleData["SnapshotOutput"], ShowCellBracket -> False,
CellMargins -> {{48, 10}, {5, 7}}, Evaluatable -> True,
CellGroupingRules -> "InputGrouping", StripStyleOnPaste -> True,
PageBreakWithin -> False, GroupPageBreakWithin -> False,
DefaultFormatType -> DefaultInputFormatType, ShowAutoStyles ->
True, "TwoByteSyntaxCharacterAutoReplacement" -> True,
HyphenationOptions -> {
"HyphenationCharacter" -> "\[Continuation]"},
AutoItalicWords -> {}, LanguageCategory -> "Mathematica",
FormatType -> InputForm, NumberMarks -> True,
LinebreakAdjustments -> {0.85, 2, 10, 0, 1}, CounterIncrements ->
"Input", MenuPosition -> 1500, MenuCommandKey -> "9"],
Cell[
StyleData["SnapshotOuput", "Printout"],
CellMargins -> {{39, 0}, {4, 6}},
LinebreakAdjustments -> {0.85, 2, 10, 1, 1}]}, Closed]],
Cell[
CellGroupData[{
Cell[
StyleData["DemoTitle"], Deletable -> False, ShowCellBracket ->
False, CellMargins -> {{48, 48}, {22, 10}},
CellGroupingRules -> {"SectionGrouping", 20}, StyleMenuListing ->
None, FontFamily -> "Verdana", FontSize -> 20, FontWeight ->
"Bold", Background -> GrayLevel[1]],
Cell[
StyleData["DemoName", "Printout"],
CellMargins -> {{24, 8}, {8, 27}},
HyphenationOptions -> {"HyphenationCharacter" -> "-"}, FontSize ->
16]}, Closed]],
Cell[
CellGroupData[{
Cell[
StyleData["DetailsSection"], CellFrame -> {{0, 0}, {0, 1}},
ShowCellBracket -> False, CellMargins -> {{48, 48}, {8, 28}},
CellGroupingRules -> {"SectionGrouping", 25},
CellFrameMargins -> {{48, 48}, {6, 8}}, CellFrameColor ->
RGBColor[0.691905, 0.790311, 0.300252], StyleMenuListing -> None,
FontFamily -> "Helvetica", FontSize -> 10, FontWeight -> "Bold",
FontColor -> RGBColor[0.691905, 0.790311, 0.300252]],
Cell[
StyleData["DetailsSection", "Printout"],
CellMargins -> {{12, 0}, {0, 16}}, PageBreakBelow -> False,
FontSize -> 12]}, Closed]],
Cell[
CellGroupData[{
Cell[
StyleData["DemoSection"], CellFrame -> {{0, 0}, {0, 1}},
ShowCellBracket -> False, CellMargins -> {{48, 48}, {8, 28}},
CellGroupingRules -> {"SectionGrouping", 30},
CellFrameMargins -> {{48, 48}, {6, 8}}, CellFrameColor ->
RGBColor[
0.6950942244602121, 0.7903257801174944, 0.29706263828488594`],
StyleMenuListing -> None, FontFamily -> "Helvetica", FontSize ->
10, FontWeight -> "Bold", FontSlant -> "Plain", FontColor ->
RGBColor[
0.6950942244602121, 0.7903257801174944, 0.29706263828488594`]],
Cell[
StyleData["DemoSection", "Printout"],
CellMargins -> {{12, 0}, {0, 16}}, PageBreakBelow -> False,
FontSize -> 12]}, Closed]],
Cell[
StyleData["ManipulateSection"], CellFrame -> {{0, 0}, {0, 2}},
ShowCellBracket -> False, CellMargins -> {{48, 48}, {10, 30}},
CellGroupingRules -> {"SectionGrouping", 30},
CellFrameMargins -> {{8, 8}, {8, 2}}, CellFrameColor ->
RGBColor[0.870588, 0.521569, 0.121569], StyleMenuListing -> None,
FontFamily -> "Verdana", FontSize -> 12],
Cell[
StyleData["ManipulateCaptionSection"],
CellFrame -> {{0, 0}, {0, 2}}, ShowCellBracket -> False,
CellMargins -> {{48, 48}, {10, 30}},
CellGroupingRules -> {"SectionGrouping", 30},
CellFrameMargins -> {{8, 8}, {8, 2}}, CellFrameColor ->
RGBColor[0.870588, 0.521569, 0.121569], DefaultNewCellStyle ->
"ManipulateCaption", StyleMenuListing -> None, FontFamily ->
"Verdana", FontSize -> 12, FontColor -> GrayLevel[0.45098]],
Cell[
StyleData["ManipulateCaption"], ShowCellBracket -> False,
CellMargins -> {{48, 48}, {10, 16}}, ReturnCreatesNewCell -> True,
StyleMenuListing -> None, FontFamily -> "Verdana", FontSize -> 11,
FontColor -> GrayLevel[0]],
Cell[
StyleData[
"SeeAlsoSection", StyleDefinitions -> StyleData["DemoSection"]],
ShowCellBracket -> False, DefaultNewCellStyle -> "SeeAlso"],
Cell[
StyleData["SeeAlso", StyleDefinitions -> StyleData["DemoNotes"]],
CellDingbat ->
Cell[
"\[FilledSmallSquare]", FontColor ->
RGBColor[0.928786, 0.43122, 0.104662]], ShowCellBracket -> False,
FontColor -> GrayLevel[0.45098]],
Cell[
StyleData[
"RelatedLinksSection", StyleDefinitions ->
StyleData["DemoSection"]], ShowCellBracket -> False,
DefaultNewCellStyle -> "RelatedLinks"],
Cell[
StyleData[
"RelatedLinks", StyleDefinitions -> StyleData["DemoNotes"]],
CellDingbat ->
Cell["\[FilledSmallSquare]", FontColor ->
RGBColor[0.928786, 0.43122, 0.104662]], ShowCellBracket -> False,
FontColor -> GrayLevel[0.45098]],
Cell[
StyleData[
"CategoriesSection", StyleDefinitions -> StyleData["DemoSection"]],
ShowCellBracket -> False, DefaultNewCellStyle -> "Categories"],
Cell[
StyleData["Categories", StyleDefinitions -> StyleData["DemoNotes"]],
ShowCellBracket -> False],
Cell[
StyleData[
"AuthorSection", StyleDefinitions -> StyleData["DemoSection"]],
ShowCellBracket -> False, CellMargins -> {{48, 48}, {4, 18}},
CellElementSpacings -> {"CellMinHeight" -> 3},
CellFrameMargins -> {{48, 48}, {6, 3}}, DefaultNewCellStyle ->
"Author", FontSize -> 1, FontColor -> GrayLevel[1]],
Cell[
StyleData["Author", StyleDefinitions -> StyleData["DemoNotes"]],
CellDingbat ->
Cell["\[FilledSmallSquare]", FontColor -> GrayLevel[0.64]],
ShowCellBracket -> False],
Cell[
StyleData[
"DetailNotes", StyleDefinitions -> StyleData["DemoNotes"]],
ShowCellBracket -> False, FontColor -> GrayLevel[0]],
Cell[
StyleData[
"CitationSection", StyleDefinitions -> StyleData["DemoSection"]],
ShowCellBracket -> False, CellMargins -> {{48, 48}, {8, 14}},
DefaultNewCellStyle -> "Categories"],
Cell[
StyleData["Citations", StyleDefinitions -> StyleData["DemoNotes"]],
ShowCellBracket -> False, ParagraphSpacing -> {0, 6}],
Cell[
StyleData[
"RevisionSection", StyleDefinitions -> StyleData["DemoSection"]],
DefaultNewCellStyle -> "RevisionNotes"],
Cell[
StyleData[
"RevisionNotes", StyleDefinitions -> StyleData["DemoNotes"]],
ShowCellBracket -> False]}, Closed]],
Cell[
CellGroupData[{
Cell[
"Specific Styles", "Section",
CellChangeTimes -> {{3.34971724802035*^9, 3.34971724966638*^9}, {
3.35091840608065*^9, 3.35091840781999*^9}, {3.35091845122987*^9,
3.35091845356607*^9}, {3.36230868322317*^9, 3.36230868335672*^9}, {
3.36928857618576*^9, 3.36928857640452*^9}, {3.3737586217185173`*^9,
3.373758622077897*^9}}],
Cell[
StyleData["InitializationSection"], CellFrame -> {{0, 0}, {0, 2}},
ShowCellBracket -> False, CellMargins -> {{48, 48}, {10, 30}},
CellGroupingRules -> {"SectionGrouping", 30},
CellFrameMargins -> {{8, 8}, {8, 2}}, CellFrameColor ->
RGBColor[0.870588, 0.521569, 0.121569], StyleMenuListing -> None,
FontFamily -> "Verdana", FontSize -> 12, FontColor ->
GrayLevel[0.45098]],
Cell[
CellGroupData[{
Cell[