-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
stats_handler.py
275 lines (229 loc) · 12.4 KB
/
stats_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import logging
import warnings
from collections.abc import Callable, Sequence
from typing import TYPE_CHECKING, Any
import torch
from monai.config import IgniteInfo
from monai.utils import is_scalar, min_version, optional_import
Events, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Events")
if TYPE_CHECKING:
from ignite.engine import Engine
else:
Engine, _ = optional_import(
"ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine", as_type="decorator"
)
DEFAULT_KEY_VAL_FORMAT = "{}: {:.4f} "
DEFAULT_TAG = "Loss"
class StatsHandler:
"""
StatsHandler defines a set of Ignite Event-handlers for all the log printing logics.
It can be used for any Ignite Engine(trainer, validator and evaluator).
And it can support logging for epoch level and iteration level with pre-defined loggers.
Note that if `name` arg is None, will leverage `engine.logger` as default logger directly, otherwise,
get logger from `logging.getLogger(name)`, we can setup a logger outside first with the same `name`.
As the default log level of `RootLogger` is `WARNING`, may need to call
`logging.basicConfig(stream=sys.stdout, level=logging.INFO)` before running this handler to enable
the stats logging.
Default behaviors:
- When EPOCH_COMPLETED, logs ``engine.state.metrics`` using ``self.logger``.
- When ITERATION_COMPLETED, logs
``self.output_transform(engine.state.output)`` using ``self.logger``.
Usage example::
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
trainer = SupervisedTrainer(...)
StatsHandler(name="train_stats").attach(trainer)
trainer.run()
More details of example is available in the tutorial:
https://github.com/Project-MONAI/tutorials/blob/master/modules/engines/unet_training_dict.py.
"""
def __init__(
self,
iteration_log: bool = True,
epoch_log: bool = True,
epoch_print_logger: Callable[[Engine], Any] | None = None,
iteration_print_logger: Callable[[Engine], Any] | None = None,
output_transform: Callable = lambda x: x[0],
global_epoch_transform: Callable = lambda x: x,
state_attributes: Sequence[str] | None = None,
name: str | None = None,
tag_name: str = DEFAULT_TAG,
key_var_format: str = DEFAULT_KEY_VAL_FORMAT,
) -> None:
"""
Args:
iteration_log: whether to log data when iteration completed, default to `True`.
epoch_log: whether to log data when epoch completed, default to `True`.
epoch_print_logger: customized callable printer for epoch level logging.
Must accept parameter "engine", use default printer if None.
iteration_print_logger: customized callable printer for iteration level logging.
Must accept parameter "engine", use default printer if None.
output_transform: a callable that is used to transform the
``ignite.engine.state.output`` into a scalar to print, or a dictionary of {key: scalar}.
In the latter case, the output string will be formatted as key: value.
By default this value logging happens when every iteration completed.
The default behavior is to print loss from output[0] as output is a decollated list
and we replicated loss value for every item of the decollated list.
`engine.state` and `output_transform` inherit from the ignite concept:
https://pytorch.org/ignite/concepts.html#state, explanation and usage example are in the tutorial:
https://github.com/Project-MONAI/tutorials/blob/master/modules/batch_output_transform.ipynb.
global_epoch_transform: a callable that is used to customize global epoch number.
For example, in evaluation, the evaluator engine might want to print synced epoch number
with the trainer engine.
state_attributes: expected attributes from `engine.state`, if provided, will extract them
when epoch completed.
name: identifier of `logging.logger` to use, if None, defaulting to ``engine.logger``.
tag_name: when iteration output is a scalar, tag_name is used to print
tag_name: scalar_value to logger. Defaults to ``'Loss'``.
key_var_format: a formatting string to control the output string format of key: value.
"""
self.iteration_log = iteration_log
self.epoch_log = epoch_log
self.epoch_print_logger = epoch_print_logger
self.iteration_print_logger = iteration_print_logger
self.output_transform = output_transform
self.global_epoch_transform = global_epoch_transform
self.state_attributes = state_attributes
self.tag_name = tag_name
self.key_var_format = key_var_format
self.logger = logging.getLogger(name) # if `name` is None, will default to `engine.logger` when attached
self.name = name
def attach(self, engine: Engine) -> None:
"""
Register a set of Ignite Event-Handlers to a specified Ignite engine.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
if self.name is None:
self.logger = engine.logger
if self.logger.getEffectiveLevel() > logging.INFO or logging.root.getEffectiveLevel() > logging.INFO:
warnings.warn(
"the effective log level of engine logger or RootLogger is higher than INFO, may not record log,"
" please call `logging.basicConfig(stream=sys.stdout, level=logging.INFO)` to enable it."
)
if self.iteration_log and not engine.has_event_handler(self.iteration_completed, Events.ITERATION_COMPLETED):
engine.add_event_handler(Events.ITERATION_COMPLETED, self.iteration_completed)
if self.epoch_log and not engine.has_event_handler(self.epoch_completed, Events.EPOCH_COMPLETED):
engine.add_event_handler(Events.EPOCH_COMPLETED, self.epoch_completed)
if not engine.has_event_handler(self.exception_raised, Events.EXCEPTION_RAISED):
engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised)
def epoch_completed(self, engine: Engine) -> None:
"""
Handler for train or validation/evaluation epoch completed Event.
Print epoch level log, default values are from Ignite `engine.state.metrics` dict.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
if self.epoch_print_logger is not None:
self.epoch_print_logger(engine)
else:
self._default_epoch_print(engine)
def iteration_completed(self, engine: Engine) -> None:
"""
Handler for train or validation/evaluation iteration completed Event.
Print iteration level log, default values are from Ignite `engine.state.output`.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
if self.iteration_print_logger is not None:
self.iteration_print_logger(engine)
else:
self._default_iteration_print(engine)
def exception_raised(self, _engine: Engine, e: Exception) -> None:
"""
Handler for train or validation/evaluation exception raised Event.
Print the exception information and traceback. This callback may be skipped because the logic
with Ignite can only trigger the first attached handler for `EXCEPTION_RAISED` event.
Args:
_engine: Ignite Engine, unused argument.
e: the exception caught in Ignite during engine.run().
"""
self.logger.exception(f"Exception: {e}")
raise e
def _default_epoch_print(self, engine: Engine) -> None:
"""
Execute epoch level log operation.
Default to print the values from Ignite `engine.state.metrics` dict and
print the values of specified attributes of `engine.state`.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
current_epoch = self.global_epoch_transform(engine.state.epoch)
prints_dict = engine.state.metrics
if prints_dict is not None and len(prints_dict) > 0:
out_str = f"Epoch[{current_epoch}] Metrics -- "
for name in sorted(prints_dict):
value = prints_dict[name]
out_str += self.key_var_format.format(name, value) if is_scalar(value) else f"{name}: {str(value)}"
self.logger.info(out_str)
if (
hasattr(engine.state, "key_metric_name")
and hasattr(engine.state, "best_metric")
and hasattr(engine.state, "best_metric_epoch")
and engine.state.key_metric_name is not None
):
out_str = f"Key metric: {engine.state.key_metric_name} "
out_str += f"best value: {engine.state.best_metric} "
out_str += f"at epoch: {engine.state.best_metric_epoch}"
self.logger.info(out_str)
if self.state_attributes is not None and len(self.state_attributes) > 0:
out_str = "State values: "
for attr in self.state_attributes:
out_str += f"{attr}: {getattr(engine.state, attr, None)} "
self.logger.info(out_str)
def _default_iteration_print(self, engine: Engine) -> None:
"""
Execute iteration log operation based on Ignite `engine.state.output` data.
Print the values from `self.output_transform(engine.state.output)`.
Since `engine.state.output` is a decollated list and we replicated the loss value for every item
of the decollated list, the default behavior is to print the loss from `output[0]`.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
loss = self.output_transform(engine.state.output)
if loss is None:
return # no printing if the output is empty
out_str = ""
if isinstance(loss, dict): # print dictionary items
for name in sorted(loss):
value = loss[name]
if not is_scalar(value):
warnings.warn(
"ignoring non-scalar output in StatsHandler,"
" make sure `output_transform(engine.state.output)` returns"
" a scalar or dictionary of key and scalar pairs to avoid this warning."
" {}:{}".format(name, type(value))
)
continue # not printing multi dimensional output
out_str += self.key_var_format.format(name, value.item() if isinstance(value, torch.Tensor) else value)
elif is_scalar(loss): # not printing multi dimensional output
out_str += self.key_var_format.format(
self.tag_name, loss.item() if isinstance(loss, torch.Tensor) else loss
)
else:
warnings.warn(
"ignoring non-scalar output in StatsHandler,"
" make sure `output_transform(engine.state.output)` returns"
" a scalar or a dictionary of key and scalar pairs to avoid this warning."
" {}".format(type(loss))
)
if not out_str:
return # no value to print
num_iterations = engine.state.epoch_length
current_iteration = engine.state.iteration
if num_iterations is not None:
current_iteration = (current_iteration - 1) % num_iterations + 1
current_epoch = engine.state.epoch
num_epochs = engine.state.max_epochs
base_str = f"Epoch: {current_epoch}/{num_epochs}, Iter: {current_iteration}/{num_iterations} --"
self.logger.info(" ".join([base_str, out_str]))