@@ -141,10 +141,8 @@ def apply(data: Union[torch.Tensor, MetaTensor],
141141
142142 for meta_matrix in pending_ :
143143 next_matrix = meta_matrix .matrix
144- print ("intermediate matrix\n " , matrix_from_matrix_container (cumulative_matrix ))
145- # cumulative_matrix = matmul(next_matrix, cumulative_matrix)
144+ # print("intermediate matrix\n", matrix_from_matrix_container(cumulative_matrix))
146145 cumulative_matrix = matmul (cumulative_matrix , next_matrix )
147- # cumulative_extents = [e @ translate_to_centre.matrix.matrix for e in cumulative_extents]
148146 cumulative_extents = [matmul (e , cumulative_matrix ) for e in cumulative_extents ]
149147
150148 new_mode = meta_matrix .metadata .get ('mode' , None )
@@ -160,12 +158,10 @@ def apply(data: Union[torch.Tensor, MetaTensor],
160158
161159 if (mode_compat is False or padding_mode_compat is False or
162160 device_compat is False or dtype_compat is False ):
163- print ("intermediate apply required" )
164161 # carry out an intermediate resample here due to incompatibility between arguments
165162 kwargs = prepare_args_dict_for_apply (cur_mode , cur_padding_mode , cur_device , cur_dtype )
166163
167164 cumulative_matrix_ = matrix_from_matrix_container (cumulative_matrix )
168- print (f"intermediate applying with cumulative matrix\n { cumulative_matrix_ } " )
169165 a = Affine (norm_coords = False ,
170166 affine = cumulative_matrix_ ,
171167 ** kwargs )
@@ -184,7 +180,7 @@ def apply(data: Union[torch.Tensor, MetaTensor],
184180
185181 cumulative_matrix_ = matrix_from_matrix_container (cumulative_matrix )
186182
187- print (f"applying with cumulative matrix\n { cumulative_matrix_ } " )
183+ # print(f"applying with cumulative matrix\n {cumulative_matrix_}")
188184 a = Affine (norm_coords = False ,
189185 affine = cumulative_matrix_ ,
190186 spatial_size = cur_shape [1 :],
@@ -224,66 +220,3 @@ def __call__(
224220
225221 def inverse (self , data ):
226222 return NotImplementedError ()
227-
228-
229- # class Applyd(MapTransform, InvertibleTransform):
230- #
231- # def __init__(self,
232- # keys: KeysCollection,
233- # modes: GridSampleModeSequence,
234- # padding_modes: GridSamplePadModeSequence,
235- # normalized: bool = False,
236- # device: Optional[torch.device] = None,
237- # dtypes: Optional[DtypeSequence] = np.float32):
238- # self.keys = keys
239- # self.modes = modes
240- # self.padding_modes = padding_modes
241- # self.device = device
242- # self.dtypes = dtypes
243- # self.resamplers = dict()
244- #
245- # if isinstance(dtypes, (list, tuple)):
246- # if len(keys) != len(dtypes):
247- # raise ValueError("'keys' and 'dtypes' must be the same length if 'dtypes' is a sequence")
248- #
249- # # create a resampler for each output data type
250- # unique_resamplers = dict()
251- # for d in dtypes:
252- # if d not in unique_resamplers:
253- # unique_resamplers[d] = Resample(norm_coords=not normalized, device=device, dtype=d)
254- #
255- # # assign each named data input the appropriate resampler for that data type
256- # for k, d in zip(keys, dtypes):
257- # if k not in self.resamplers:
258- # self.resamplers[k] = unique_resamplers[d]
259- #
260- # else:
261- # # share the resampler across all named data inputs
262- # resampler = Resample(norm_coords=not normalized, device=device, dtype=dtypes)
263- # for k in keys:
264- # self.resamplers[k] = resampler
265- #
266- # def __call__(self,
267- # data: Mapping[Hashable, NdarrayOrTensor],
268- # allow_missing_keys: bool = False) -> Dict[Hashable, NdarrayOrTensor]:
269- # d = dict(data)
270- # mapping_stack = d["mappings"]
271- # keys = d.keys()
272- # for key_tuple in self.key_iterator(d,
273- # expand_scalar_to_tuple(self.modes, len(keys)),
274- # expand_scalar_to_tuple(self.padding_modes, len(keys)),
275- # expand_scalar_to_tuple(self.dtypes, len(keys))):
276- # key, mode, padding_mode, dtype = key_tuple
277- # affine = mapping_stack[key].transform()
278- # data = d[key]
279- # spatial_size = data.shape[1:]
280- # grid = create_grid(spatial_size, device=self.device, backend="torch", dtype=dtype)
281- # _device = grid.device
282- #
283- # _b = TransformBackends.TORCH if isinstance(grid, torch.Tensor) else TransformBackends.NUMPY
284- #
285- # grid, *_ = convert_data_type(grid, torch.Tensor, device=_device, dtype=grid.dtype)
286- # affine, *_ = convert_to_dst_type(affine, grid)
287- # d[key] = self.resamplers[key](data, grid=grid, mode=mode, padding_mode=padding_mode)
288- #
289- # return d
0 commit comments