@@ -839,7 +839,7 @@ def lazy_call(self, img, axes) -> torch.Tensor:
839839 spatial_chn_shape = [1 , * convert_to_numpy (_shape , wrap_sequence = True ).tolist ()]
840840 _affine = self .update_meta (img , spatial_chn_shape , axes )
841841 self .push_pending_transform (img , lazy_shape = _shape , lazy_affine = _affine )
842- return img # type: ignore
842+ return img
843843
844844 def __call__ (self , img : torch .Tensor ) -> torch .Tensor :
845845 """
@@ -970,7 +970,7 @@ def __call__(
970970
971971 _mode = look_up_option (self .mode if mode is None else mode , InterpolateMode )
972972 _align_corners = self .align_corners if align_corners is None else align_corners
973- img = convert_to_tensor (img , track_meta = get_track_meta ()) # type: ignore
973+ img = convert_to_tensor (img , track_meta = get_track_meta ())
974974 original_sp_size = img .peek_pending_shape () if isinstance (img , MetaTensor ) else img .shape [1 :]
975975 if self .lazy_evaluation :
976976 if anti_aliasing :
@@ -1192,7 +1192,7 @@ def lazy_call(self, img, output_shape, transform_t, mode, padding_mode, align_co
11921192 "dtype" : str (dtype )[6 :],
11931193 },
11941194 )
1195- return img # type: ignore
1195+ return img
11961196
11971197 def update_meta (self , img , rotate_mat ):
11981198 affine = convert_to_tensor (img .peek_pending_affine (), track_meta = False )
@@ -1370,7 +1370,7 @@ def lazy_call(self, img, zoom_size, mode, align_corners) -> torch.Tensor:
13701370 "padcrop" : {},
13711371 },
13721372 )
1373- return img # type: ignore
1373+ return img
13741374
13751375 def inverse (self , data : torch .Tensor ) -> torch .Tensor :
13761376 transform = self .pop_transform (data )
0 commit comments