Skip to content

Commit d2d42d3

Browse files
committed
fixes variable names
Signed-off-by: Wenqi Li <wenqil@nvidia.com>
1 parent ce04eb5 commit d2d42d3

File tree

2 files changed

+12
-12
lines changed

2 files changed

+12
-12
lines changed

monai/transforms/croppad/functional.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@
2828
__all__ = ["pad_func", "crop_func"]
2929

3030

31-
def pad_func(img_t, to_pad_, mode_, kwargs_, transform_info):
31+
def pad_func(img_t, to_pad_, mode, kwargs, transform_info):
3232
extra_info = {"padded": to_pad_}
3333
img_size = img_t.peek_pending_shape() if isinstance(img_t, MetaTensor) else img_t.shape[1:]
3434
_affine = (
@@ -55,25 +55,25 @@ def pad_func(img_t, to_pad_, mode_, kwargs_, transform_info):
5555
extra_info=extra_info,
5656
transform_info=transform_info,
5757
)
58-
if mode_ in {"linear_ramp", "maximum", "mean", "median", "minimum", "symmetric", "empty"}:
59-
out = monai.transforms.Pad._np_pad(img_t, pad_width=to_pad_, mode=mode_, **kwargs_)
58+
if mode in {"linear_ramp", "maximum", "mean", "median", "minimum", "symmetric", "empty"}:
59+
out = monai.transforms.Pad._np_pad(img_t, pad_width=to_pad_, mode=mode, **kwargs)
6060
else:
61-
mode_ = convert_pad_mode(dst=img_t, mode=mode_).value
61+
mode = convert_pad_mode(dst=img_t, mode=mode).value
6262
try:
6363
_pad = (
6464
monai.transforms.Pad._pt_pad
65-
if mode_ in {"reflect", "replicate"}
65+
if mode in {"reflect", "replicate"}
6666
and img_t.dtype not in {torch.int16, torch.int64, torch.bool, torch.uint8}
6767
else monai.transforms.Pad._np_pad
6868
)
69-
out = _pad(img_t, pad_width=to_pad_, mode=mode_, **kwargs_)
69+
out = _pad(img_t, pad_width=to_pad_, mode=mode, **kwargs)
7070
except (ValueError, TypeError, RuntimeError) as err:
7171
if isinstance(err, NotImplementedError) or any(
7272
k in str(err) for k in ("supported", "unexpected keyword", "implemented")
7373
):
74-
out = monai.transforms.Pad._np_pad(img_t, pad_width=to_pad_, mode=mode_, **kwargs_)
74+
out = monai.transforms.Pad._np_pad(img_t, pad_width=to_pad_, mode=mode, **kwargs)
7575
else:
76-
raise ValueError(f"{img_t.shape} {to_pad_} {mode_} {kwargs_} {img_t.dtype} {img_t.device}") from err
76+
raise ValueError(f"{img_t.shape} {to_pad_} {mode} {kwargs} {img_t.dtype} {img_t.device}") from err
7777
else:
7878
out = img_t
7979
if get_track_meta():

monai/transforms/spatial/functional.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -184,7 +184,7 @@ def orientation(data_array, original_affine, spatial_ornt, transform_info):
184184
if get_track_meta():
185185
new_affine = to_affine_nd(len(spatial_shape), original_affine) @ affine_x
186186
new_affine = to_affine_nd(original_affine, new_affine)
187-
new_affine, *_ = convert_data_type(new_affine, torch.Tensor, dtype=torch.float32, device=data_array.device)
187+
new_affine, *_ = convert_data_type(new_affine, torch.Tensor, dtype=torch.float64, device=data_array.device)
188188
data_array.affine = new_affine
189189
return TraceableTransform.track_transform(data_array, extra_info=extra_info, transform_info=transform_info)
190190

@@ -418,8 +418,8 @@ def update_meta(img, spatial_size, new_spatial_size, axes, k):
418418
return TraceableTransform.track_transform(out, extra_info=extra_info, transform_info=transform_info)
419419

420420

421-
def affine_func(img, affine, grid, resampler, sp_size, _mode, _padding_mode, do_resampling, image_only, transform_info):
422-
extra_info = {"affine": affine, "mode": _mode, "padding_mode": _padding_mode, "do_resampling": do_resampling}
421+
def affine_func(img, affine, grid, resampler, sp_size, mode, padding_mode, do_resampling, image_only, transform_info):
422+
extra_info = {"affine": affine, "mode": mode, "padding_mode": padding_mode, "do_resampling": do_resampling}
423423
img_size = img.peek_pending_shape() if isinstance(img, MetaTensor) else img.shape[1:]
424424
if transform_info.get(TraceKeys.LAZY_EVALUATION):
425425
if not get_track_meta():
@@ -436,7 +436,7 @@ def affine_func(img, affine, grid, resampler, sp_size, _mode, _padding_mode, do_
436436
)
437437
return img if image_only else (img, affine)
438438
if do_resampling:
439-
out = resampler(img=img, grid=grid, mode=_mode, padding_mode=_padding_mode)
439+
out = resampler(img=img, grid=grid, mode=mode, padding_mode=padding_mode)
440440
else:
441441
out = convert_data_type(img, dtype=torch.float32, device=resampler.device)[0]
442442

0 commit comments

Comments
 (0)