|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Appending to Kerchunk references\n" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "## Overview\n", |
| 15 | + "\n", |
| 16 | + "In this tutorial we'll show how to append to a pre-existing Kerchunk reference. We'll use the same datasets as in the [NetCDF reference generation](../generating_references/NetCDF.ipynb) example. \n", |
| 17 | + "\n", |
| 18 | + "## Prerequisites\n", |
| 19 | + "| Concepts | Importance | Notes |\n", |
| 20 | + "| --- | --- | --- |\n", |
| 21 | + "| [Kerchunk Basics](../foundations/kerchunk_basics) | Required | Core |\n", |
| 22 | + "| [Multiple Files and Kerchunk](../foundations/kerchunk_multi_file) | Required | Core |\n", |
| 23 | + "| [Multi-File Datasets with Kerchunk](../case_studies/ARG_Weather.ipynb) | Required | IO/Visualization |\n", |
| 24 | + "\n", |
| 25 | + "- **Time to learn**: 45 minutes\n", |
| 26 | + "---" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "metadata": {}, |
| 32 | + "source": [ |
| 33 | + "## Imports" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": null, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [], |
| 41 | + "source": [ |
| 42 | + "import logging\n", |
| 43 | + "from tempfile import TemporaryDirectory\n", |
| 44 | + "\n", |
| 45 | + "import dask\n", |
| 46 | + "import fsspec\n", |
| 47 | + "import ujson\n", |
| 48 | + "import xarray as xr\n", |
| 49 | + "from distributed import Client\n", |
| 50 | + "from kerchunk.combine import MultiZarrToZarr\n", |
| 51 | + "from kerchunk.hdf import SingleHdf5ToZarr" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "markdown", |
| 56 | + "metadata": {}, |
| 57 | + "source": [ |
| 58 | + "## Create Input File List\n", |
| 59 | + "\n", |
| 60 | + "Here we are using `fsspec's` glob functionality along with the *`*`* wildcard operator and some string slicing to grab a list of NetCDF files from a `s3` `fsspec` filesystem. " |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "# Initiate fsspec filesystems for reading\n", |
| 70 | + "fs_read = fsspec.filesystem(\"s3\", anon=True, skip_instance_cache=True)\n", |
| 71 | + "\n", |
| 72 | + "files_paths = fs_read.glob(\n", |
| 73 | + " \"s3://smn-ar-wrf/DATA/WRF/DET/2022/12/31/12/WRFDETAR_01H_20221231_12_*\"\n", |
| 74 | + ")\n", |
| 75 | + "\n", |
| 76 | + "# Here we prepend the prefix 's3://', which points to AWS.\n", |
| 77 | + "file_pattern = sorted([\"s3://\" + f for f in files_paths])" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": null, |
| 83 | + "metadata": {}, |
| 84 | + "outputs": [], |
| 85 | + "source": [ |
| 86 | + "# This dictionary will be passed as kwargs to `fsspec`. For more details, check out the\n", |
| 87 | + "# `foundations/kerchunk_basics` notebook.\n", |
| 88 | + "so = dict(mode=\"rb\", anon=True, default_fill_cache=False, default_cache_type=\"first\")\n", |
| 89 | + "\n", |
| 90 | + "# We are creating a temporary directory to store the .json reference files\n", |
| 91 | + "# Alternately, you could write these to cloud storage.\n", |
| 92 | + "td = TemporaryDirectory()\n", |
| 93 | + "temp_dir = td.name" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "## Start a Dask Client\n", |
| 101 | + "\n", |
| 102 | + "To parallelize the creation of our reference files, we will use `Dask`. For a detailed guide on how to use Dask and Kerchunk, see the Foundations notebook: [Kerchunk and Dask](../foundations/kerchunk_dask).\n" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": null, |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [], |
| 110 | + "source": [ |
| 111 | + "client = Client(n_workers=8, silence_logs=logging.ERROR)\n", |
| 112 | + "client" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "markdown", |
| 117 | + "metadata": {}, |
| 118 | + "source": [ |
| 119 | + "## Create a `Kerchunk` reference file for the first 24 hours" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "first_24_hrs = file_pattern[:24]" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": null, |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [], |
| 136 | + "source": [ |
| 137 | + "# Use Kerchunk's `SingleHdf5ToZarr` method to create a `Kerchunk` index from\n", |
| 138 | + "# a NetCDF file.\n", |
| 139 | + "\n", |
| 140 | + "\n", |
| 141 | + "def generate_json_reference(fil, output_dir: str):\n", |
| 142 | + " with fs_read.open(fil, **so) as infile:\n", |
| 143 | + " h5chunks = SingleHdf5ToZarr(infile, fil, inline_threshold=300)\n", |
| 144 | + " fname = fil.split(\"/\")[-1].strip(\".nc\")\n", |
| 145 | + " outf = f\"{output_dir}/{fname}.json\"\n", |
| 146 | + " with open(outf, \"wb\") as f:\n", |
| 147 | + " f.write(ujson.dumps(h5chunks.translate()).encode())\n", |
| 148 | + " return outf\n", |
| 149 | + "\n", |
| 150 | + "\n", |
| 151 | + "# Generate Dask Delayed objects\n", |
| 152 | + "tasks = [dask.delayed(generate_json_reference)(fil, temp_dir) for fil in first_24_hrs]" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": null, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [], |
| 160 | + "source": [ |
| 161 | + "# Start parallel processing\n", |
| 162 | + "import warnings\n", |
| 163 | + "\n", |
| 164 | + "warnings.filterwarnings(\"ignore\")\n", |
| 165 | + "dask.compute(tasks)" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "markdown", |
| 170 | + "metadata": {}, |
| 171 | + "source": [ |
| 172 | + "## Combine .json `Kerchunk` reference files and write a combined `Kerchunk` index\n", |
| 173 | + "\n", |
| 174 | + "In the following cell, we are combining all the `.json` reference files that were generated above into a single reference file and writing that file to disk." |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [], |
| 182 | + "source": [ |
| 183 | + "# Create a list of reference json files\n", |
| 184 | + "output_files = [\n", |
| 185 | + " f\"{temp_dir}/{f.strip('.nc').split('/')[-1]}.json\" for f in first_24_hrs\n", |
| 186 | + "]\n", |
| 187 | + "\n", |
| 188 | + "# combine individual references into single consolidated reference\n", |
| 189 | + "mzz = MultiZarrToZarr(\n", |
| 190 | + " output_files,\n", |
| 191 | + " concat_dims=[\"time\"],\n", |
| 192 | + " identical_dims=[\"y\", \"x\"],\n", |
| 193 | + " remote_protocol=\"s3\",\n", |
| 194 | + " remote_options={\"anon\": True},\n", |
| 195 | + " coo_map={\"time\": \"cf:time\"},\n", |
| 196 | + ")\n", |
| 197 | + "# save translate reference in memory for later visualization\n", |
| 198 | + "multi_kerchunk = mzz.translate()\n", |
| 199 | + "\n", |
| 200 | + "# Write kerchunk .json record.\n", |
| 201 | + "output_fname = \"ARG_combined.json\"\n", |
| 202 | + "with open(f\"{output_fname}\", \"wb\") as f:\n", |
| 203 | + " f.write(ujson.dumps(multi_kerchunk).encode())" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "markdown", |
| 208 | + "metadata": {}, |
| 209 | + "source": [ |
| 210 | + "## Append references for the next 24 hours\n", |
| 211 | + "\n", |
| 212 | + "We'll now append the references for the next 24 hours. First, we create an individual temporary reference file for each input data file. Then,\n", |
| 213 | + "we load the original references and append the new references." |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": null, |
| 219 | + "metadata": {}, |
| 220 | + "outputs": [], |
| 221 | + "source": [ |
| 222 | + "# First generate the individual reference files to be appended\n", |
| 223 | + "\n", |
| 224 | + "second_24_hrs = file_pattern[24:48]\n", |
| 225 | + "\n", |
| 226 | + "# Generate Dask Delayed objects\n", |
| 227 | + "tasks = [dask.delayed(generate_json_reference)(fil, temp_dir) for fil in second_24_hrs]\n", |
| 228 | + "\n", |
| 229 | + "# Generate reference files for the individual NetCDF files\n", |
| 230 | + "dask.compute(tasks)" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": null, |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [], |
| 238 | + "source": [ |
| 239 | + "# Load the original references\n", |
| 240 | + "fs_local = fsspec.filesystem(\"file\")\n", |
| 241 | + "archive = ujson.load(fs_local.open(output_fname))" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "code", |
| 246 | + "execution_count": null, |
| 247 | + "metadata": {}, |
| 248 | + "outputs": [], |
| 249 | + "source": [ |
| 250 | + "# Create a list of individual reference files to append to the combined reference\n", |
| 251 | + "output_files = [\n", |
| 252 | + " f\"{temp_dir}/{f.strip('.nc').split('/')[-1]}.json\" for f in second_24_hrs\n", |
| 253 | + "]\n", |
| 254 | + "\n", |
| 255 | + "# Append to the existing reference file\n", |
| 256 | + "mzz = MultiZarrToZarr.append(\n", |
| 257 | + " output_files,\n", |
| 258 | + " original_refs=archive,\n", |
| 259 | + " concat_dims=[\"time\"],\n", |
| 260 | + " identical_dims=[\"y\", \"x\"],\n", |
| 261 | + " remote_protocol=\"s3\",\n", |
| 262 | + " remote_options={\"anon\": True},\n", |
| 263 | + " coo_map={\"time\": \"cf:time\"},\n", |
| 264 | + ")\n", |
| 265 | + "\n", |
| 266 | + "multi_kerchunk = mzz.translate()\n", |
| 267 | + "\n", |
| 268 | + "# Write kerchunk .json record.\n", |
| 269 | + "output_fname = \"ARG_combined.json\"\n", |
| 270 | + "with open(f\"{output_fname}\", \"wb\") as f:\n", |
| 271 | + " f.write(ujson.dumps(multi_kerchunk).encode())" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "markdown", |
| 276 | + "metadata": {}, |
| 277 | + "source": [ |
| 278 | + "## Opening Reference Dataset with Fsspec and Xarray\n" |
| 279 | + ] |
| 280 | + }, |
| 281 | + { |
| 282 | + "cell_type": "code", |
| 283 | + "execution_count": null, |
| 284 | + "metadata": {}, |
| 285 | + "outputs": [], |
| 286 | + "source": [ |
| 287 | + "storage_options = {\n", |
| 288 | + " \"remote_protocol\": \"s3\",\n", |
| 289 | + " \"skip_instance_cache\": True,\n", |
| 290 | + "} # options passed to fsspec\n", |
| 291 | + "open_dataset_options = {\"chunks\": {}} # opens passed to xarray\n", |
| 292 | + "\n", |
| 293 | + "ds = xr.open_dataset(\n", |
| 294 | + " \"ARG_combined.json\",\n", |
| 295 | + " engine=\"kerchunk\",\n", |
| 296 | + " storage_options=storage_options,\n", |
| 297 | + " open_dataset_options=open_dataset_options,\n", |
| 298 | + ")\n", |
| 299 | + "\n", |
| 300 | + "ds" |
| 301 | + ] |
| 302 | + }, |
| 303 | + { |
| 304 | + "cell_type": "code", |
| 305 | + "execution_count": null, |
| 306 | + "metadata": {}, |
| 307 | + "outputs": [], |
| 308 | + "source": [] |
| 309 | + } |
| 310 | + ], |
| 311 | + "metadata": { |
| 312 | + "kernelspec": { |
| 313 | + "display_name": "kerchunk-cookbook", |
| 314 | + "language": "python", |
| 315 | + "name": "python3" |
| 316 | + }, |
| 317 | + "language_info": { |
| 318 | + "codemirror_mode": { |
| 319 | + "name": "ipython", |
| 320 | + "version": 3 |
| 321 | + }, |
| 322 | + "file_extension": ".py", |
| 323 | + "mimetype": "text/x-python", |
| 324 | + "name": "python", |
| 325 | + "nbconvert_exporter": "python", |
| 326 | + "pygments_lexer": "ipython3", |
| 327 | + "version": "3.10.13" |
| 328 | + } |
| 329 | + }, |
| 330 | + "nbformat": 4, |
| 331 | + "nbformat_minor": 2 |
| 332 | +} |
0 commit comments