-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_cls.py
68 lines (58 loc) · 2.48 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import pandas as pd
import numpy as np
from pythainlp import word_tokenize
from ast import literal_eval
from tqdm import tqdm_notebook
from collections import Counter
import re
import emoji
import string
from fastai.text import *
from fastai.callbacks import CSVLogger, SaveModelCallback
from pythainlp.ulmfit import *
# #when training with augmented set
train_df = pd.read_csv('train_df.csv')
valid_df = pd.read_csv('valid_df.csv')
#test set
test_df = pd.read_csv('test_df.csv')
model_path = 'prachathai_data/'
#lm data
data_lm = load_data(model_path,'prachathai_lm.pkl')
data_lm.sanity_check()
#classification data
#tt = Tokenizer(tok_func = ThaiTokenizer, lang = 'th', pre_rules = pre_rules_th, post_rules=post_rules_th)
#processor = [TokenizeProcessor(tokenizer=tt, chunksize=10000, mark_fields=False),
# NumericalizeProcessor(vocab=data_lm.vocab, max_vocab=60000, min_freq=3)]
#data_cls = (ItemLists(model_path,train=TextList.from_df(train_df, model_path, cols=['body_text'], processor=processor),
# valid=TextList.from_df(valid_df, model_path, cols=['body_text'], processor=processor))
# .label_from_df(list(train_df.columns[1:]))
# .add_test(TextList.from_df(test_df, model_path, cols=['body_text'], processor=processor))
# .databunch(bs=50)
# )
#data_cls.sanity_check()
#data_cls.save('prachathai_cls.pkl')
#just load
data_cls = load_data(model_path,'prachathai_cls.pkl')
data_cls.sanity_check()
print(len(data_cls.vocab.itos))
#model
config = dict(emb_sz=400, n_hid=1550, n_layers=4, pad_token=1, qrnn=False,
output_p=0.4, hidden_p=0.2, input_p=0.6, embed_p=0.1, weight_p=0.5)
trn_args = dict(bptt=70, drop_mult=0.5, alpha=2, beta=1, max_len=500)
learn = text_classifier_learner(data_cls, AWD_LSTM, config=config, pretrained=False, **trn_args)
#load pretrained finetuned model
learn.load_encoder('prachathai_enc')
#train unfrozen
learn.freeze_to(-1)
learn.fit_one_cycle(1, 2e-2, moms=(0.8, 0.7))
learn.freeze_to(-2)
learn.fit_one_cycle(1, slice(1e-2 / (2.6 ** 4), 1e-2), moms=(0.8, 0.7))
learn.freeze_to(-3)
learn.fit_one_cycle(10, slice(5e-3 / (2.6 ** 4), 5e-3), moms=(0.8, 0.7),
callbacks=[SaveModelCallback(learn, every='improvement', monitor='val_loss', name='prachathai_cls')])
#learn.unfreeze()
#learn.fit_one_cycle(10, slice(1e-3 / (2.6 ** 4), 1e-3), moms=(0.8, 0.7))
#save test results
probs, y_true = learn.get_preds(ds_type = DatasetType.Test, ordered=True)
probs = probs.numpy()
pickle.dump(probs, open(f'{model_path}probs.pkl','wb'))