Note
The new solver interfaces are still under active development. They are included in the releases as development previews. Please be aware that APIs and functionality may change with no notice.
We welcome any feedback and ideas as we develop this capability. Please post feedback on Issue 1030.
Pyomo offers interfaces into multiple solvers, both commercial and open
source. To support better capabilities for solver interfaces, the Pyomo
team is actively redesigning the existing interfaces to make them more
maintainable and intuitive for use. A preview of the redesigned
interfaces can be found in pyomo.contrib.solver
.
.. currentmodule:: pyomo.contrib.solver
The new interfaces are not completely backwards compatible with the
existing Pyomo solver interfaces. However, to aid in testing and
evaluation, we are distributing versions of the new solver interfaces
that are compatible with the existing ("legacy") solver interface.
These "legacy" interfaces are registered with the current
SolverFactory
using slightly different names (to avoid conflicts
with existing interfaces).
Solver | Name registered in the pyomo.contrib.solver.common.factory.SolverFactory |
Name registered in the pyomo.opt.base.solvers.LegacySolverFactory |
---|---|---|
Ipopt | ipopt |
ipopt_v2 |
Gurobi (persistent) | gurobi_persistent |
gurobi_persistent_v2 |
Gurobi (direct) | gurobi_direct |
gurobi_direct_v2 |
HiGHS | highs |
highs |
Here we use the new interface as exposed through the existing (legacy) solver factory and solver interface wrapper. This provides an API that is compatible with the existing (legacy) Pyomo solver interface and can be used with other Pyomo tools / capabilities.
.. testcode:: :skipif: not ipopt_available import pyomo.environ as pyo model = pyo.ConcreteModel() model.x = pyo.Var(initialize=1.5) model.y = pyo.Var(initialize=1.5) def rosenbrock(model): return (1.0 - model.x) ** 2 + 100.0 * (model.y - model.x**2) ** 2 model.obj = pyo.Objective(rule=rosenbrock, sense=pyo.minimize) status = pyo.SolverFactory('ipopt_v2').solve(model) pyo.assert_optimal_termination(status) model.pprint()
.. testoutput:: :skipif: not ipopt_available :hide: ... 2 Var Declarations ... 3 Declarations: x y obj
In keeping with our commitment to backwards compatibility, both the legacy and future methods of specifying solver options are supported:
.. testcode:: :skipif: not ipopt_available import pyomo.environ as pyo model = pyo.ConcreteModel() model.x = pyo.Var(initialize=1.5) model.y = pyo.Var(initialize=1.5) def rosenbrock(model): return (1.0 - model.x) ** 2 + 100.0 * (model.y - model.x**2) ** 2 model.obj = pyo.Objective(rule=rosenbrock, sense=pyo.minimize) # Backwards compatible status = pyo.SolverFactory('ipopt_v2').solve(model, options={'max_iter' : 6}) # Forwards compatible status = pyo.SolverFactory('ipopt_v2').solve(model, solver_options={'max_iter' : 6}) model.pprint()
.. testoutput:: :skipif: not ipopt_available :hide: ... 2 Var Declarations ... 3 Declarations: x y obj
Here we use the new interface by importing it directly:
.. testcode:: :skipif: not ipopt_available # Direct import import pyomo.environ as pyo from pyomo.contrib.solver.solvers.ipopt import Ipopt model = pyo.ConcreteModel() model.x = pyo.Var(initialize=1.5) model.y = pyo.Var(initialize=1.5) def rosenbrock(model): return (1.0 - model.x) ** 2 + 100.0 * (model.y - model.x**2) ** 2 model.obj = pyo.Objective(rule=rosenbrock, sense=pyo.minimize) opt = Ipopt() status = opt.solve(model) pyo.assert_optimal_termination(status) # Displays important results information; only available through the new interfaces status.display() model.pprint()
.. testoutput:: :skipif: not ipopt_available :hide: solution_loader: ... ... 3 Declarations: x y obj
Here we use the new interface by retrieving it from the new SolverFactory
:
.. testcode:: :skipif: not ipopt_available # Import through new SolverFactory import pyomo.environ as pyo from pyomo.contrib.solver.common.factory import SolverFactory model = pyo.ConcreteModel() model.x = pyo.Var(initialize=1.5) model.y = pyo.Var(initialize=1.5) def rosenbrock(model): return (1.0 - model.x) ** 2 + 100.0 * (model.y - model.x**2) ** 2 model.obj = pyo.Objective(rule=rosenbrock, sense=pyo.minimize) opt = SolverFactory('ipopt') status = opt.solve(model) pyo.assert_optimal_termination(status) # Displays important results information; only available through the new interfaces status.display() model.pprint()
.. testoutput:: :skipif: not ipopt_available :hide: solution_loader: ... ... 3 Declarations: x y obj
We also provide a mechanism to get a "preview" of the future where we replace the existing (legacy) SolverFactory and utilities with the new (development) version (see :doc:`/reference/future`):
.. testcode:: :skipif: not ipopt_available # Change default SolverFactory version import pyomo.environ as pyo from pyomo.__future__ import solver_factory_v3 model = pyo.ConcreteModel() model.x = pyo.Var(initialize=1.5) model.y = pyo.Var(initialize=1.5) def rosenbrock(model): return (1.0 - model.x) ** 2 + 100.0 * (model.y - model.x**2) ** 2 model.obj = pyo.Objective(rule=rosenbrock, sense=pyo.minimize) status = pyo.SolverFactory('ipopt').solve(model) pyo.assert_optimal_termination(status) # Displays important results information; only available through the new interfaces status.display() model.pprint()
.. testoutput:: :skipif: not ipopt_available :hide: solution_loader: ... ... 3 Declarations: x y obj
.. testcode:: :skipif: not ipopt_available :hide: from pyomo.__future__ import solver_factory_v1
The new interface allows access to new capabilities in the various
problem writers, including the linear presolve and scaling options
recently incorporated into the redesigned NL writer. For example, you
can control the NL writer in the new ipopt
interface through the
solver's writer_config
configuration option:
.. autoclass:: pyomo.contrib.solver.solvers.ipopt.Ipopt :noindex: :members: solve
.. testcode:: from pyomo.contrib.solver.solvers.ipopt import Ipopt opt = Ipopt() opt.config.writer_config.display()
.. testoutput:: show_section_timing: false skip_trivial_constraints: true file_determinism: FileDeterminism.ORDERED symbolic_solver_labels: false scale_model: true export_nonlinear_variables: None row_order: None column_order: None export_defined_variables: true linear_presolve: true
Note that, by default, both linear_presolve
and scale_model
are enabled.
Users can manipulate linear_presolve
and scale_model
to their preferred
states by changing their values.
>>> opt.config.writer_config.linear_presolve = False
All new interfaces should be built upon one of two classes (currently): :class:`SolverBase<pyomo.contrib.solver.common.base.SolverBase>` or :class:`PersistentSolverBase<pyomo.contrib.solver.common.base.PersistentSolverBase>`.
All solvers should have the following:
.. autoclass:: pyomo.contrib.solver.common.base.SolverBase :noindex: :members:
Persistent solvers include additional members as well as other configuration options:
.. autoclass:: pyomo.contrib.solver.common.base.PersistentSolverBase :noindex: :show-inheritance: :members:
Every solver, at the end of a
:meth:`solve<pyomo.contrib.solver.common.base.SolverBase.solve>` call, will
return a :class:`Results<pyomo.contrib.solver.common.results.Results>`
object. This object is a :py:class:`pyomo.common.config.ConfigDict`,
which can be manipulated similar to a standard dict
in Python.
.. autoclass:: pyomo.contrib.solver.common.results.Results :noindex: :show-inheritance: :members: :undoc-members:
Pyomo offers a standard set of termination conditions to map to solver returns. The intent of :class:`TerminationCondition<pyomo.contrib.solver.common.results.TerminationCondition>` is to notify the user of why the solver exited. The user is expected to inspect the :class:`Results<pyomo.contrib.solver.common.results.Results>` object or any returned solver messages or logs for more information.
.. autoclass:: pyomo.contrib.solver.common.results.TerminationCondition :noindex: :show-inheritance:
Pyomo offers a standard set of solution statuses to map to solver output. The intent of :class:`SolutionStatus<pyomo.contrib.solver.common.results.SolutionStatus>` is to notify the user of what the solver returned at a high level. The user is expected to inspect the :class:`Results<pyomo.contrib.solver.common.results.Results>` object or any returned solver messages or logs for more information.
.. autoclass:: pyomo.contrib.solver.common.results.SolutionStatus :noindex: :show-inheritance:
Solutions can be loaded back into a model using a SolutionLoader
. A specific
loader should be written for each unique case. Several have already been
implemented. For example, for ipopt
:
.. autoclass:: pyomo.contrib.solver.solvers.ipopt.IpoptSolutionLoader :noindex: :members: :show-inheritance: :inherited-members:
For all future solver interfaces, Pyomo adopts the following sign convention. Given the problem
\begin{align} \min & f(x) \\ \text{s.t.} \\ & c_i(x) = 0 && \forall i \in \mathcal{E} \\ & g_i(x) \leq 0 && \forall i \in \mathcal{U} \\ & h_i(x) \geq 0 && \forall i \in \mathcal{L} \end{align}
We define the Lagrangian as
\begin{align} L(x, \lambda, \nu, \delta) = f(x) - \sum_{i \in \mathcal{E}} \lambda_i c_i(x) - \sum_{i \in \mathcal{U}} \nu_i g_i(x) - \sum_{i \in \mathcal{L}} \delta_i h_i(x) \end{align}
Then, the KKT conditions are [NW99]_
\begin{align} \nabla_x L(x, \lambda, \nu, \delta) = 0 \\ c(x) = 0 \\ g(x) \leq 0 \\ h(x) \geq 0 \\ \nu \leq 0 \\ \delta \geq 0 \\ \nu_i g_i(x) = 0 \\ \delta_i h_i(x) = 0 \end{align}
Note that this sign convention is based on the (lower, body, upper)
representation of constraints rather than the expression provided by a
user. Users can specify constraints with variables on both the left- and
right-hand sides of equalities and inequalities. However, the
(lower, body, upper)
representation ensures that all variables
appear in the body
, matching the form of the problem above.