@@ -75,8 +75,8 @@ def coordinate_gradient(b, M, reg, v, i):
75
75
'''
76
76
77
77
r = M [i , :] - v
78
- exp_v = np .exp (- r / reg ) * b
79
- khi = exp_v / (np .sum (exp_v ))
78
+ exp_v = np .exp (- r / reg ) * b
79
+ khi = exp_v / (np .sum (exp_v ))
80
80
return b - khi
81
81
82
82
@@ -161,7 +161,7 @@ def sag_entropic_transport(a, b, M, reg, numItermax=10000, lr=0.1):
161
161
cur_coord_grad = a [i ] * coordinate_gradient (b , M , reg , v , i )
162
162
sum_stored_gradient += (cur_coord_grad - stored_gradient [i ])
163
163
stored_gradient [i ] = cur_coord_grad
164
- v += lr * (1. / n_source ) * sum_stored_gradient
164
+ v += lr * (1. / n_source ) * sum_stored_gradient
165
165
return v
166
166
167
167
@@ -243,8 +243,8 @@ def averaged_sgd_entropic_transport(b, M, reg, numItermax=300000, lr=1):
243
243
k = cur_iter + 1
244
244
i = np .random .randint (n_source )
245
245
cur_coord_grad = coordinate_gradient (b , M , reg , cur_v , i )
246
- cur_v += (lr / np .sqrt (k )) * cur_coord_grad
247
- ave_v = (1. / k ) * cur_v + (1 - 1. / k ) * ave_v
246
+ cur_v += (lr / np .sqrt (k )) * cur_coord_grad
247
+ ave_v = (1. / k ) * cur_v + (1 - 1. / k ) * ave_v
248
248
return ave_v
249
249
250
250
@@ -317,7 +317,7 @@ def c_transform_entropic(b, M, reg, v):
317
317
u = np .zeros (n_source )
318
318
for i in range (n_source ):
319
319
r = M [i , :] - v
320
- exp_v = np .exp (- r / reg ) * b
320
+ exp_v = np .exp (- r / reg ) * b
321
321
u [i ] = - reg * np .log (np .sum (exp_v ))
322
322
return u
323
323
@@ -410,6 +410,6 @@ def transportation_matrix_entropic(a, b, M, reg, method, numItermax=10000,
410
410
return None
411
411
412
412
opt_u = c_transform_entropic (b , M , reg , opt_v )
413
- pi = (np .exp ((opt_u [:, None ] + opt_v [None , :] - M [:, :])/ reg )
413
+ pi = (np .exp ((opt_u [:, None ] + opt_v [None , :] - M [:, :]) / reg )
414
414
* a [:, None ] * b [None , :])
415
415
return pi
0 commit comments