You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+5Lines changed: 5 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -324,3 +324,8 @@ Dictionary Learning](https://arxiv.org/pdf/2102.06555.pdf), International Confer
324
324
[55] Ronak Mehta, Jeffery Kline, Vishnu Suresh Lokhande, Glenn Fung, & Vikas Singh (2023). [Efficient Discrete Multi Marginal Optimal Transport Regularization](https://openreview.net/forum?id=R98ZfMt-jE). In The Eleventh International Conference on Learning Representations (ICLR).
325
325
326
326
[56] Jeffery Kline. [Properties of the d-dimensional earth mover’s problem](https://www.sciencedirect.com/science/article/pii/S0166218X19301441). Discrete Applied Mathematics, 265: 128–141, 2019.
327
+
328
+
[57] Delon, J., Desolneux, A., & Salmona, A. (2022). [Gromov–Wasserstein
329
+
distances between Gaussian distributions](https://hal.science/hal-03197398v2/file/main.pdf). Journal of Applied Probability, 59(4),
Copy file name to clipboardExpand all lines: RELEASES.md
+2-1Lines changed: 2 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -5,7 +5,7 @@
5
5
6
6
This new release contains several new features and bug fixes.
7
7
8
-
New features include a new submodule `ot.gnn` that contains two new Graph neural network layers (compatible with [Pytorch Geometric](https://pytorch-geometric.readthedocs.io/)) for template-based pooling of graphs with an example on [graph classification](https://pythonot.github.io/master/auto_examples/gromov/plot_gnn_TFGW.html). Related to this, we also now provide FGW and semi relaxed FGW solvers for which the resulting loss is differentiable w.r.t. the parameter `alpha`. Other contributions on the (F)GW front include a new solver for the Proximal Point algorithm [that can be used to solve entropic GW problems](https://pythonot.github.io/master/auto_examples/gromov/plot_fgw_solvers.html) (using the parameter `solver="PPA"`), novels Sinkhorn-based solvers for entropic semi-relaxed (F)GW, the possibility to provide a warm-start to the solvers, and optional marginal weights of the samples (uniform weights ar used by default).
8
+
New features include a new submodule `ot.gnn` that contains two new Graph neural network layers (compatible with [Pytorch Geometric](https://pytorch-geometric.readthedocs.io/)) for template-based pooling of graphs with an example on [graph classification](https://pythonot.github.io/master/auto_examples/gromov/plot_gnn_TFGW.html). Related to this, we also now provide FGW and semi relaxed FGW solvers for which the resulting loss is differentiable w.r.t. the parameter `alpha`. Other contributions on the (F)GW front include a new solver for the Proximal Point algorithm [that can be used to solve entropic GW problems](https://pythonot.github.io/master/auto_examples/gromov/plot_fgw_solvers.html) (using the parameter `solver="PPA"`), new solvers for entropic FGW barycenters, novels Sinkhorn-based solvers for entropic semi-relaxed (F)GW, the possibility to provide a warm-start to the solvers, and optional marginal weights of the samples (uniform weights ar used by default). Finally we added in the submodule `ot.gaussian` and `ot.da` new loss and mapping estimators for the Gaussian Gromov-Wasserstein that can be used as a fast alternative to GW and estimates linear mappings between unregistered spaces that can potentially have different size (See the update [linear mapping example](https://pythonot.github.io/master/auto_examples/domain-adaptation/plot_otda_linear_mapping.html) for an illustration).
9
9
10
10
We also provide a new solver for the [Entropic Wasserstein Component Analysis](https://pythonot.github.io/master/auto_examples/others/plot_EWCA.html) that is a generalization of the celebrated PCA taking into account the local neighborhood of the samples. We also now have a new solver in `ot.smooth` for the [sparsity-constrained OT (last plot)](https://pythonot.github.io/master/auto_examples/plot_OT_1D_smooth.html) that can be used to find regularized OT plans with sparsity constraints. Finally we have a first multi-marginal solver for regular 1D distributions with a Monge loss (see [here](https://pythonot.github.io/master/auto_examples/others/plot_dmmot.html)).
11
11
@@ -15,6 +15,7 @@ Many other bugs and issues have been fixed and we want to thank all the contribu
15
15
16
16
17
17
#### New features
18
+
- Gaussian Gromov Wasserstein loss and mapping (PR #498)
0 commit comments