Skip to content

Commit adf9d04

Browse files
author
Hicham Janati
committed
update Readme + minor rendering in examples
1 parent 8979827 commit adf9d04

File tree

4 files changed

+16
-12
lines changed

4 files changed

+16
-12
lines changed

README.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,7 @@ It provides the following solvers:
2727
* Gromov-Wasserstein distances and barycenters ([13] and regularized [12])
2828
* Stochastic Optimization for Large-scale Optimal Transport (semi-dual problem [18] and dual problem [19])
2929
* Non regularized free support Wasserstein barycenters [20].
30+
* Unbalanced OT with KL relaxation distance and barycenter [10, 25].
3031

3132
Some demonstrations (both in Python and Jupyter Notebook format) are available in the examples folder.
3233

@@ -165,6 +166,7 @@ The contributors to this library are:
165166
* [Kilian Fatras](https://kilianfatras.github.io/)
166167
* [Alain Rakotomamonjy](https://sites.google.com/site/alainrakotomamonjy/home)
167168
* [Vayer Titouan](https://tvayer.github.io/)
169+
* [Hicham Janati](https://hichamjanati.github.io/) (Unbalanced OT)
168170

169171
This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code (in various languages):
170172

@@ -236,3 +238,5 @@ You can also post bug reports and feature requests in Github issues. Make sure t
236238
[23] Aude, G., Peyré, G., Cuturi, M., [Learning Generative Models with Sinkhorn Divergences](https://arxiv.org/abs/1706.00292), Proceedings of the Twenty-First International Conference on Artficial Intelligence and Statistics, (AISTATS) 21, 2018
237239

238240
[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). [Optimal Transport for structured data with application on graphs](http://proceedings.mlr.press/v97/titouan19a.html) Proceedings of the 36th International Conference on Machine Learning (ICML).
241+
242+
[25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. (2019). [Learning with a Wasserstein Loss](http://cbcl.mit.edu/wasserstein/) Advances in Neural Information Processing Systems (NIPS).

examples/plot_UOT_1D.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
# -*- coding: utf-8 -*-
22
"""
3-
====================
3+
===============================
44
1D Unbalanced optimal transport
5-
====================
5+
===============================
66
77
This example illustrates the computation of Unbalanced Optimal transport
88
using a Kullback-Leibler relaxation.
@@ -53,7 +53,7 @@
5353
pl.plot(x, b, 'r', label='Target distribution')
5454
pl.legend()
5555

56-
#%% plot distributions and loss matrix
56+
# plot distributions and loss matrix
5757

5858
pl.figure(2, figsize=(5, 5))
5959
ot.plot.plot1D_mat(a, b, M, 'Cost matrix M')
@@ -64,7 +64,7 @@
6464
# --------------
6565

6666

67-
#%% Sinkhorn
67+
# Sinkhorn
6868

6969
epsilon = 0.1 # entropy parameter
7070
alpha = 1. # Unbalanced KL relaxation parameter

examples/plot_UOT_barycenter_1D.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@
2727
# Generate data
2828
# -------------
2929

30-
#%% parameters
30+
# parameters
3131

3232
n = 100 # nb bins
3333

@@ -53,7 +53,7 @@
5353
# Plot data
5454
# ---------
5555

56-
#%% plot the distributions
56+
# plot the distributions
5757

5858
pl.figure(1, figsize=(6.4, 3))
5959
for i in range(n_distributions):
@@ -65,7 +65,7 @@
6565
# Barycenter computation
6666
# ----------------------
6767

68-
#%% non weighted barycenter computation
68+
# non weighted barycenter computation
6969

7070
weight = 0.5 # 0<=weight<=1
7171
weights = np.array([1 - weight, weight])
@@ -97,7 +97,7 @@
9797
# Barycentric interpolation
9898
# -------------------------
9999

100-
#%% barycenter interpolation
100+
# barycenter interpolation
101101

102102
n_weight = 11
103103
weight_list = np.linspace(0, 1, n_weight)
@@ -114,7 +114,7 @@
114114
B_wass[:, i] = ot.unbalanced.barycenter_unbalanced(A, M, reg, alpha, weights)
115115

116116

117-
#%% plot interpolation
117+
# plot interpolation
118118

119119
pl.figure(3)
120120

ot/unbalanced.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@ def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000,
8787
8888
.. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.
8989
90-
.. [23] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015
90+
.. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015
9191
9292
9393
See Also
@@ -196,7 +196,7 @@ def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn',
196196
197197
.. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.
198198
199-
.. [23] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015
199+
.. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015
200200
201201
See Also
202202
--------
@@ -299,7 +299,7 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000,
299299
300300
.. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.
301301
302-
.. [23] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015
302+
.. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015
303303
304304
See Also
305305
--------

0 commit comments

Comments
 (0)