-
Notifications
You must be signed in to change notification settings - Fork 101
/
machFX7.py
195 lines (149 loc) · 5.47 KB
/
machFX7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
'''
To compare patterns:
use a % change calculation to calculate similarity between each %change
movement in the pattern finder. From those numbers, subtract them from 100, to
get a "how similar" #. From this point, take all 10 of the how similars,
and average them. Whichever pattern is MOST similar, is the one we will assume
we have found.
'''
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
import numpy as np
from numpy import loadtxt
import time
date,bid,ask = np.loadtxt('GBPUSD1d.txt', unpack=True,
delimiter=',',
converters={0:mdates.strpdate2num('%Y%m%d%H%M%S')})
avgLine = ((bid+ask)/2)
####DEFINE######
#CHANGE#
patternAr = []
performanceAr = []
patForRec = []
def percentChange(startPoint,currentPoint):
try:
return ((float(currentPoint)-startPoint)/abs(startPoint))*100.00
except:
return 0
def patternStorage():
'''
The goal of patternFinder is to begin collection of %change patterns
in the tick data. From there, we also collect the short-term outcome
of this pattern. Later on, the length of the pattern, how far out we
look to compare to, and the length of the compared range be changed,
and even THAT can be machine learned to find the best of all 3 by
comparing success rates.
'''
#####
startTime = time.time()
# required to do a pattern array, because the liklihood of an identical
# %change across millions of patterns is fairly likely and would
# cause problems. IF it was a problem of identical patterns,
# then it wouldnt matter, but the % change issue
# would cause a lot of harm. Cannot have a list as a dictionary Key.
#MOVE THE ARRAYS THEMSELVES#
x = len(avgLine)-30
y = 11
currentStance = 'none'
while y < x:
pattern = []
p1 = percentChange(avgLine[y-10], avgLine[y-9])
p2 = percentChange(avgLine[y-10], avgLine[y-8])
p3 = percentChange(avgLine[y-10], avgLine[y-7])
p4 = percentChange(avgLine[y-10], avgLine[y-6])
p5 = percentChange(avgLine[y-10], avgLine[y-5])
p6 = percentChange(avgLine[y-10], avgLine[y-4])
p7 = percentChange(avgLine[y-10], avgLine[y-3])
p8 = percentChange(avgLine[y-10], avgLine[y-2])
p9 = percentChange(avgLine[y-10], avgLine[y-1])
p10= percentChange(avgLine[y-10], avgLine[y])
outcomeRange = avgLine[y+20:y+30]
currentPoint = avgLine[y]
#Define##########################
#########change to try except for safety
try:
avgOutcome = reduce(lambda x, y: x + y, outcomeRange) / len(outcomeRange)
except Exception, e:
print str(e)
avgOutcome = 0
#Define
futureOutcome = percentChange(currentPoint, avgOutcome)
#print some logics
'''
print 'where we are historically:',currentPoint
print 'soft outcome of the horizon:',avgOutcome
print 'This pattern brings a future change of:',futureOutcome
print '_______'
print p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
'''
pattern.append(p1)
pattern.append(p2)
pattern.append(p3)
pattern.append(p4)
pattern.append(p5)
pattern.append(p6)
pattern.append(p7)
pattern.append(p8)
pattern.append(p9)
pattern.append(p10)
#can use .index to find the index value, then search for that value to get the matching information.
# so like, performanceAr.index(12341)
patternAr.append(pattern)
performanceAr.append(futureOutcome)
y+=1
#####
endTime = time.time()
print len(patternAr)
print len(performanceAr)
print 'Pattern storing took:', endTime-startTime
#####
####
####
def patternRecognition():
#mostRecentPoint = avgLine[-1]
patForRec = []
cp1 = percentChange(avgLine[-11],avgLine[-10])
cp2 = percentChange(avgLine[-11],avgLine[-9])
cp3 = percentChange(avgLine[-11],avgLine[-8])
cp4 = percentChange(avgLine[-11],avgLine[-7])
cp5 = percentChange(avgLine[-11],avgLine[-6])
cp6 = percentChange(avgLine[-11],avgLine[-5])
cp7 = percentChange(avgLine[-11],avgLine[-4])
cp8 = percentChange(avgLine[-11],avgLine[-3])
cp9 = percentChange(avgLine[-11],avgLine[-2])
cp10= percentChange(avgLine[-11],avgLine[-1])
patForRec.append(cp1)
patForRec.append(cp2)
patForRec.append(cp3)
patForRec.append(cp4)
patForRec.append(cp5)
patForRec.append(cp6)
patForRec.append(cp7)
patForRec.append(cp8)
patForRec.append(cp9)
patForRec.append(cp10)
print patForRec
def graphRawFX():
fig=plt.figure(figsize=(10,7))
ax1 = plt.subplot2grid((40,40), (0,0), rowspan=40, colspan=40)
ax1.plot(date,bid)
ax1.plot(date,ask)
#ax1.plot(date,((bid+ask)/2))
#ax1.plot(date,percentChange(ask[0],ask),'r')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S'))
#####
plt.grid(True)
for label in ax1.xaxis.get_ticklabels():
label.set_rotation(45)
plt.gca().get_yaxis().get_major_formatter().set_useOffset(False)
#######
ax1_2 = ax1.twinx()
#ax1_2.plot(date, (ask-bid))
ax1_2.fill_between(date, 0, (ask-bid), facecolor='g',alpha=.3)
#ax1_2.set_ylim(0, 3*ask.max())
#######
plt.subplots_adjust(bottom=.23)
#plt.grid(True)
plt.show()