-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_conv.py
59 lines (45 loc) · 1.41 KB
/
train_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from rnn import RNN
import h5py
import numpy as np
import scipy as SP
import scipy.io
import os as os
import cPickle as pickle
def make_sets(X, Y, ratio):
np.random.seed(1)
indices = np.random.permutation(len(X))
cut = len(indices)*ratio
train, valid = indices[:cut], indices[cut:]
train_x = [X[i] for i in train]
train_y = [Y[i] for i in train]
valid_x = [X[i] for i in valid]
valid_y = [Y[i] for i in valid]
return train_x, train_y, valid_x, valid_y
film_tr = '120602PH5'
film_tr2 = '130218PH8'
ftr = '../training_data/feat_'+film_tr+'_'+film_tr2+'_TRAIN.pickle'
#training data
file_tr = open(ftr,'r')
res = pickle.load(file_tr)
X = res['feats']
Y = res['lab']
file_tr.close()
## generate validation file
train_x = X
train_y = Y
train_x, train_y, valid_x, valid_y = make_sets(train_x, train_y, 0.85)
## train model
print("Train Balance: " + str(len(train_x)) + "*" + str(np.mean(train_y)))
print("Valid Balance: " + str(len(valid_x)) + "*" + str(np.mean(valid_y)))
idim = len(train_x[0][0])
odim = max(train_y)+1
## train model
ndim = len(train_x[0][0])
print("Dimensions: " + str(ndim))
auc_list = list()
f1_list = list()
theta_list = list()
model = RNN(n_input=ndim, n_hidden=20, n_output=1, architecture='dblstm')
res = model.train_rprop(train_x, train_y, valid_x, valid_y, n_epochs=15)
fname = '../models/rnn_models/trained_modelRNN'+film_tr+'test' + '.pkl'
model.save(fname )